Suppr超能文献

网络应用支持与标准管理对乳腺癌辅助激素治疗依从性的影响:WEBAPPAC 研究。

Impact of web application support versus standard management on adherence with adjuvant hormone therapy in patients treated for breast cancer: the WEBAPPAC study.

机构信息

Clinical Research Department, Centre François Baclesse, 3 avenue du Général Harris, Caen, 14000, France.

ANTICIPE (Interdisciplinary Research Unit for the Prevention and Treatment of Cancer), INSERM Unit, Caen, 1086, France.

出版信息

BMC Cancer. 2023 Aug 9;23(1):736. doi: 10.1186/s12885-023-11242-1.

Abstract

BACKGROUND

Non-metastatic breast cancer treatment is mainly based on surgery, with or without chemotherapy, radiotherapy and/or hormone therapy. To reduce the risk of hormone receptor positive (HR+) disease recurrence, hormone therapy is prescribed for at least 5 years. It may induce adverse drug reactions (ADRs) as joint pain, sexual dysfunction, weight increase, fatigue, mood disorders and vasomotor symptoms. Around 30-40% of patients withhold hormone therapy within 5 years after initiation. Based on encouraging results of mobile health in patient follow-up, we developed a web-application addressed for breast cancer patients initiating adjuvant hormonal therapy and aimed to assess its impact on hormone therapy adherence, ADRs management, and health-related quality of life.

METHODS

The WEBAPPAC trial is a randomized, open-label, prospective, single-center phase 3 study aiming to assess the interest of a web-application support as compared to standard management among breast cancer patients initiating hormone therapy. The main endpoint is the proportion of patients with hormone therapy adherence failure within 18 months after treatment start, in each arm. Eligible patients will be 1:1 randomized between the WEBAPPAC web-application support (experimental arm,) or standard support (control arm), with stratification on type of hormone therapy (Aromatase inhibitor or Tamoxifen). We plan to enroll 438 patients overall. Failure to hormone therapy will be assessed using the Morisky 8-item self-questionnaire (MMSA8), patient adherence logbook, and medical consultations. Secondary outcomes include hormone therapy adherence at 6 months, pain (Visual Analogue Scale and Brief Pain Inventory), quality of life (EORTC QLQ-C30 and BR23 self-questionnaires), anxiety and depression (Hospital and Depression Scale), and return to work and/or daily activities. The user experience with the WEBAPPAC web-application will be assessed using the System Usability Scale (SUS) questionnaire.

DISCUSSION

Hormone therapy discontinuation or adherence failure in breast cancer patients may be indirectly related to an increased risk of recurrence. A better control of medication adherence, through the detection of side effects and some proposed actions trying to reduce them, appears therefore essential to limit the risk of disease recurrence. The WEBAPPAC web-application thus aims better monitoring and allowing higher level of responsiveness in case of ADRs, thus improving treatment adherence.

TRIAL REGISTRATION

NCT04554927, registered September 18, 2020.

PROTOCOL VERSION

Version 2.1 dated from December 21, 2021.

摘要

背景

非转移性乳腺癌的治疗主要基于手术,辅以化疗、放疗和/或激素治疗。为了降低激素受体阳性(HR+)疾病复发的风险,至少需要进行 5 年的激素治疗。它可能会引起不良反应(ADRs),如关节疼痛、性功能障碍、体重增加、疲劳、情绪障碍和血管舒缩症状。大约 30-40%的患者在开始治疗后 5 年内停止激素治疗。基于移动医疗在患者随访中令人鼓舞的结果,我们开发了一种针对开始辅助激素治疗的乳腺癌患者的网络应用程序,旨在评估其对激素治疗依从性、ADR 管理和健康相关生活质量的影响。

方法

WEBAPPAC 试验是一项随机、开放标签、前瞻性、单中心的 3 期研究,旨在评估与标准管理相比,网络应用程序支持对开始激素治疗的乳腺癌患者的影响。主要终点是治疗开始后 18 个月内每个治疗组中激素治疗依从失败的患者比例。符合条件的患者将按激素治疗类型(芳香化酶抑制剂或他莫昔芬)以 1:1 的比例随机分配至 WEBAPPAC 网络应用程序支持(实验组)或标准支持(对照组)。我们计划总共招募 438 名患者。将使用 Morisky 8 项自我问卷(MMSA8)、患者依从性日志和医疗咨询来评估激素治疗失败情况。次要结局包括 6 个月时的激素治疗依从性、疼痛(视觉模拟量表和简要疼痛量表)、生活质量(EORTC QLQ-C30 和 BR23 自我问卷)、焦虑和抑郁(医院和抑郁量表)以及重返工作和/或日常活动。WEBAPPAC 网络应用程序的用户体验将使用系统可用性量表(SUS)问卷进行评估。

讨论

乳腺癌患者停止激素治疗或依从性失败可能与复发风险增加间接相关。通过检测不良反应并采取一些措施试图减轻它们,可以更好地控制药物依从性,因此对于限制疾病复发至关重要。因此,WEBAPPAC 网络应用程序旨在更好地监测和提高对不良反应的响应能力,从而提高治疗依从性。

试验注册

NCT04554927,注册于 2020 年 9 月 18 日。

方案版本

版本 2.1 日期为 2021 年 12 月 21 日。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e0/10413707/a95b64853ae0/12885_2023_11242_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验