Suppr超能文献

片上二维材料的多自由度控制。

On-chip multi-degree-of-freedom control of two-dimensional materials.

机构信息

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

National Institute for Materials Science, Tsukuba, Japan.

出版信息

Nature. 2024 Aug;632(8027):1038-1044. doi: 10.1038/s41586-024-07826-x. Epub 2024 Aug 21.

Abstract

Two-dimensional materials (2DM) and their heterostructures offer tunable electrical and optical properties, primarily modifiable through electrostatic gating and twisting. Although electrostatic gating is a well-established method for manipulating 2DM, achieving real-time control over interfacial properties remains challenging in exploring 2DM physics and advanced quantum device technology. Current methods, often reliant on scanning microscopes, are limited in their scope of application, lacking the accessibility and scalability of electrostatic gating at the device level. Here we introduce an on-chip platform for 2DM with in situ adjustable interfacial properties, using a microelectromechanical system (MEMS). This platform comprises compact and cost-effective devices with the ability of precise voltage-controlled manipulation of 2DM, including approaching, twisting and pressurizing actions. We demonstrate this technology by creating synthetic topological singularities, such as merons, in the nonlinear optical susceptibility of twisted hexagonal boron nitride (h-BN). A key application of this technology is the development of integrated light sources with real-time and wide-range tunable polarization. Furthermore, we predict a quantum analogue that can generate entangled photon pairs with adjustable entanglement properties. Our work extends the abilities of existing technologies in manipulating low-dimensional quantum materials and paves the way for new hybrid two- and three-dimensional devices, with promising implications in condensed-matter physics, quantum optics and related fields.

摘要

二维材料(2DM)及其异质结构提供了可调谐的电学和光学性质,主要可通过静电门控和扭转来调节。尽管静电门控是操纵 2DM 的一种成熟方法,但在探索 2DM 物理和先进量子器件技术时,实现对界面性质的实时控制仍然具有挑战性。目前的方法通常依赖于扫描显微镜,其应用范围有限,缺乏在器件级别进行静电门控的可访问性和可扩展性。在这里,我们使用微机电系统(MEMS)为 2DM 引入了一种具有原位可调界面性质的片上平台。该平台由紧凑且具有成本效益的设备组成,具有精确电压控制 2DM 的能力,包括接近、扭转和加压操作。我们通过在扭曲的六方氮化硼(h-BN)的非线性光学灵敏度中创建合成拓扑奇点,例如 merons,来证明这项技术。该技术的一个关键应用是开发具有实时和宽范围可调谐偏振的集成光源。此外,我们预测了一种量子模拟,该模拟可以生成具有可调谐纠缠特性的纠缠光子对。我们的工作扩展了现有技术在操纵低维量子材料方面的能力,为新型混合二维和三维器件铺平了道路,在凝聚态物理、量子光学和相关领域具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验