Patel Dev, Wei Wanying, Singh Harmann, Xu Kai, Beck Christopher, Wildy Michael, Schossig John, Hu Xiao, Hyun Dong Choon, Chen Wenshuai, Lu Ping
Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States.
Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States.
ACS Sustain Chem Eng. 2023 Jul 27;11(31):11570-11579. doi: 10.1021/acssuschemeng.3c02094. eCollection 2023 Aug 7.
In this study, we present an ecofriendly technique for encapsulating lauric acid (LA), a natural phase change material, within polystyrene (PS) nanofibers through coaxial electrospinning. The resulting LAPS core-sheath nanofibers exhibited a melting enthalpy of up to 136.6 J/g, representing 75.8% of the heat storage capacity of pristine LA (180.2 J/g), a value surpassing all previously reported core-sheath fibers. Scanning electron microscopy revealed uniform LAPS nanofibers free of surface LA until the core LA feed rate reached 1.3 mL/h. As the core LA feed rate increased, the fiber diameter shrank from 2.24 ± 0.31 to 0.58 ± 0.45 μm. Infrared spectra demonstrated a proportional increase in the LA content with rising core LA injection rates. Thermogravimetric analysis found the maximum core LA content in core-sheath nanofibers to be 75.0%. Differential scanning calorimetry thermograms displayed a trend line shift upon LA leakage for LAPS nanofibers. LAPS fibers containing 75.0% LA effectively maintained consistent cycling stability and reusability across 100 heating-cooling cycles (20-60 °C) without heat storage deterioration. The core LA remained securely within the PS sheath after 100 cycles, and the LAPS nanofibers retained an excellent structural integrity without rupture. The energy-dense and form-stable LAPS core-sheath nanofibers have great potential for various thermal energy storage applications, such as building insulation, smart textiles, and electronic cooling systems, providing efficient temperature regulation and energy conservation.
在本研究中,我们提出了一种环保技术,通过同轴静电纺丝将天然相变材料月桂酸(LA)封装在聚苯乙烯(PS)纳米纤维中。所得的LAPS核壳纳米纤维的熔融焓高达136.6 J/g,占原始LA蓄热能力(180.2 J/g)的75.8%,该值超过了所有先前报道的核壳纤维。扫描电子显微镜显示,在芯部LA进料速率达到1.3 mL/h之前,LAPS纳米纤维均匀且表面无LA。随着芯部LA进料速率的增加,纤维直径从2.24±0.31μm缩小至0.58±0.45μm。红外光谱表明,随着芯部LA注入速率的增加,LA含量成比例增加。热重分析发现,核壳纳米纤维中芯部LA的最大含量为75.0%。差示扫描量热法热谱图显示,LAPS纳米纤维在LA泄漏时趋势线发生偏移。含有75.0%LA的LAPS纤维在100个加热-冷却循环(20-60°C)中有效地保持了一致的循环稳定性和可重复使用性,且蓄热性能没有恶化。经过100个循环后,芯部LA仍牢固地保留在PS鞘内,LAPS纳米纤维保持了优异的结构完整性,没有破裂。能量密集且形态稳定的LAPS核壳纳米纤维在各种热能存储应用中具有巨大潜力,如建筑隔热、智能纺织品和电子冷却系统,可提供高效的温度调节和节能效果。