Suppr超能文献

FLASH放疗与辐射剂量计的应用

FLASH Radiotherapy and the Use of Radiation Dosimeters.

作者信息

Siddique Sarkar, Ruda Harry E, Chow James C L

机构信息

Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.

Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada.

出版信息

Cancers (Basel). 2023 Jul 30;15(15):3883. doi: 10.3390/cancers15153883.

Abstract

Radiotherapy (RT) using ultra-high dose rate (UHDR) radiation, known as FLASH RT, has shown promising results in reducing normal tissue toxicity while maintaining tumor control. However, implementing FLASH RT in clinical settings presents technical challenges, including limited depth penetration and complex treatment planning. Monte Carlo (MC) simulation is a valuable tool for dose calculation in RT and has been investigated for optimizing FLASH RT. Various MC codes, such as EGSnrc, DOSXYZnrc, and Geant4, have been used to simulate dose distributions and optimize treatment plans. Accurate dosimetry is essential for FLASH RT, and radiation detectors play a crucial role in measuring dose delivery. Solid-state detectors, including diamond detectors such as microDiamond, have demonstrated linear responses and good agreement with reference detectors in UHDR and ultra-high dose per pulse (UHDPP) ranges. Ionization chambers are commonly used for dose measurement, and advancements have been made to address their response nonlinearities at UHDPP. Studies have proposed new calculation methods and empirical models for ion recombination in ionization chambers to improve their accuracy in FLASH RT. Additionally, strip-segmented ionization chamber arrays have shown potential for the experimental measurement of dose rate distribution in proton pencil beam scanning. Radiochromic films, such as Gafchromic EBT3, have been used for absolute dose measurement and to validate MC simulation results in high-energy X-rays, triggering the FLASH effect. These films have been utilized to characterize ionization chambers and measure off-axis and depth dose distributions in FLASH RT. In conclusion, MC simulation provides accurate dose calculation and optimization for FLASH RT, while radiation detectors, including diamond detectors, ionization chambers, and radiochromic films, offer valuable tools for dosimetry in UHDR environments. Further research is needed to refine treatment planning techniques and improve detector performance to facilitate the widespread implementation of FLASH RT, potentially revolutionizing cancer treatment.

摘要

使用超高剂量率(UHDR)辐射的放射治疗(RT),即FLASH RT,已在降低正常组织毒性同时维持肿瘤控制方面显示出有前景的结果。然而,在临床环境中实施FLASH RT存在技术挑战,包括深度穿透有限和复杂的治疗计划。蒙特卡罗(MC)模拟是RT中剂量计算的宝贵工具,并已用于优化FLASH RT。各种MC代码,如EGSnrc、DOSXYZnrc和Geant4,已被用于模拟剂量分布和优化治疗计划。准确的剂量测定对于FLASH RT至关重要,并且辐射探测器在测量剂量传递中起着关键作用。固态探测器,包括如微金刚石等金刚石探测器,在UHDR和每脉冲超高剂量(UHDPP)范围内已显示出线性响应并与参考探测器有良好的一致性。电离室通常用于剂量测量,并且已经取得进展以解决其在UHDPP下的响应非线性问题。研究提出了用于电离室中离子复合的新计算方法和经验模型,以提高其在FLASH RT中的准确性。此外,条带分段电离室阵列已显示出在质子笔形束扫描中实验测量剂量率分布的潜力。放射变色薄膜,如Gafchromic EBT3,已用于绝对剂量测量并验证高能X射线中的MC模拟结果,引发FLASH效应。这些薄膜已被用于表征电离室并测量FLASH RT中的离轴和深度剂量分布。总之,MC模拟为FLASH RT提供了准确的剂量计算和优化,而包括金刚石探测器、电离室和放射变色薄膜在内的辐射探测器为UHDR环境中的剂量测定提供了有价值的工具。需要进一步研究以完善治疗计划技术并提高探测器性能,以促进FLASH RT的广泛实施,这可能会彻底改变癌症治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fd9/10417829/cfe0e8beccc5/cancers-15-03883-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验