Sun Bing, Mao Hongying, Yin Chengshun
School of Economics and Management, Harbin Engineering University, Harbin, China.
Front Psychol. 2020 May 26;11:806. doi: 10.3389/fpsyg.2020.00806. eCollection 2020.
With the emergence of online communities, more and more people are participating in online technology communities to meet personalized learning needs. This study aims to investigate whether and how male and female users behave differently in online technology communities. Using text data from the Python Technology Community, through the LDA (Latent Dirichlet Allocation) model, sentiment analysis, and regression analysis, this paper reveals the different topics of male and female users in the online technology community, their sentimental tendencies and activity under different topics, and their correlation and mutual influence. The results show the following: (1) Male users tend to provide information help, while female users prefer to participate in the topic of making friends and advertising. (2) When communicating in the technology community, male and female users mostly express positive emotions, but female users express positive emotions more frequently. (3) Different emotional tendencies of male and female users under different topics have different effects on their activity in the community. The activity of female users is more susceptible to emotional orientation.
随着在线社区的出现,越来越多的人参与在线技术社区以满足个性化学习需求。本研究旨在调查男性和女性用户在在线技术社区中的行为是否存在差异以及如何存在差异。利用来自Python技术社区的文本数据,通过LDA(潜在狄利克雷分配)模型、情感分析和回归分析,本文揭示了在线技术社区中男性和女性用户的不同话题、他们在不同话题下的情感倾向和活跃度,以及它们之间的相关性和相互影响。结果如下:(1)男性用户倾向于提供信息帮助,而女性用户更喜欢参与交友和广告话题。(2)在技术社区交流时,男性和女性用户大多表达积极情绪,但女性用户更频繁地表达积极情绪。(3)男性和女性用户在不同话题下的不同情感倾向对他们在社区中的活跃度有不同影响。女性用户的活跃度更容易受到情感取向的影响。