Suppr超能文献

未受伤斑马鱼视网膜中静止的米勒神经胶质细胞的异质性驱动了光感受器消融后的不同反应。

Heterogeneity in quiescent Müller glia in the uninjured zebrafish retina drive differential responses following photoreceptor ablation.

作者信息

Krylov Aaron, Yu Shuguang, Veen Kellie, Newton Axel, Ye Aojun, Qin Huiwen, He Jie, Jusuf Patricia R

机构信息

School of BioSciences, University of Melbourne, Parkville, VIC, Australia.

State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China.

出版信息

Front Mol Neurosci. 2023 Jul 27;16:1087136. doi: 10.3389/fnmol.2023.1087136. eCollection 2023.

Abstract

INTRODUCTION

Loss of neurons in the neural retina is a leading cause of vision loss. While humans do not possess the capacity for retinal regeneration, zebrafish can achieve this through activation of resident Müller glia. Remarkably, despite the presence of Müller glia in humans and other mammalian vertebrates, these cells lack an intrinsic ability to contribute to regeneration. Upon activation, zebrafish Müller glia can adopt a stem cell-like state, undergo proliferation and generate new neurons. However, the underlying molecular mechanisms of this activation subsequent retinal regeneration remains unclear.

METHODS/RESULTS: To address this, we performed single-cell RNA sequencing (scRNA-seq) and report remarkable heterogeneity in gene expression within quiescent Müller glia across distinct dorsal, central and ventral retina pools of such cells. Next, we utilized a genetically driven, chemically inducible nitroreductase approach to study Müller glia activation following selective ablation of three distinct photoreceptor subtypes: long wavelength sensitive cones, short wavelength sensitive cones, and rods. There, our data revealed that a region-specific bias in activation of Müller glia exists in the zebrafish retina, and this is independent of the distribution of the ablated cell type across retinal regions. Notably, gene ontology analysis revealed that injury-responsive dorsal and central Müller glia express genes related to dorsal/ventral pattern formation, growth factor activity, and regulation of developmental process. Through scRNA-seq analysis, we identify a shared genetic program underlying initial Müller glia activation and cell cycle entry, followed by differences that drive the fate of regenerating neurons. We observed an initial expression of AP-1 and injury-responsive transcription factors, followed by genes involved in Notch signaling, ribosome biogenesis and gliogenesis, and finally expression of cell cycle, chromatin remodeling and microtubule-associated genes.

DISCUSSION

Taken together, our findings document the regional specificity of gene expression within quiescent Müller glia and demonstrate unique Müller glia activation and regeneration features following neural ablation. These findings will improve our understanding of the molecular pathways relevant to neural regeneration in the retina.

摘要

引言

神经视网膜中的神经元丢失是视力丧失的主要原因。人类不具备视网膜再生能力,而斑马鱼可以通过激活常驻的穆勒胶质细胞来实现这一点。值得注意的是,尽管人类和其他哺乳动物脊椎动物中存在穆勒胶质细胞,但这些细胞缺乏促进再生的内在能力。激活后,斑马鱼的穆勒胶质细胞可以进入类似干细胞的状态,进行增殖并产生新的神经元。然而,这种激活以及随后视网膜再生的潜在分子机制仍不清楚。

方法/结果:为了解决这个问题,我们进行了单细胞RNA测序(scRNA-seq),并报告了在静止的穆勒胶质细胞中,跨不同背侧、中央和腹侧视网膜区域的基因表达存在显著异质性。接下来,我们利用基因驱动的化学诱导型硝基还原酶方法,研究在选择性消融三种不同光感受器亚型(长波长敏感视锥细胞、短波长敏感视锥细胞和视杆细胞)后穆勒胶质细胞的激活情况。在那里,我们的数据显示斑马鱼视网膜中穆勒胶质细胞的激活存在区域特异性偏差,并且这与被消融细胞类型在视网膜区域的分布无关。值得注意的是,基因本体分析表明,损伤反应性的背侧和中央穆勒胶质细胞表达与背/腹模式形成、生长因子活性和发育过程调节相关的基因。通过scRNA-seq分析,我们确定了穆勒胶质细胞初始激活和进入细胞周期的共同遗传程序,随后是驱动再生神经元命运的差异。我们观察到AP-1和损伤反应性转录因子的初始表达,随后是参与Notch信号、核糖体生物发生和胶质细胞生成的基因,最后是细胞周期、染色质重塑和微管相关基因的表达。

讨论

综上所述,我们的研究结果记录了静止穆勒胶质细胞内基因表达的区域特异性,并证明了神经消融后穆勒胶质细胞独特的激活和再生特征。这些发现将增进我们对视网膜神经再生相关分子途径的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d7/10413128/d8eaa6de0f8e/fnmol-16-1087136-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验