Suppr超能文献

基于比例多校准的公平录取风险预测。

Fair admission risk prediction with proportional multicalibration.

作者信息

La Cava William G, Lett Elle, Wan Guangya

机构信息

Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Proc Mach Learn Res. 2023;209:350-378.

Abstract

Fair calibration is a widely desirable fairness criteria in risk prediction contexts. One way to measure and achieve fair calibration is with multicalibration. Multicalibration constrains calibration error among flexibly-defined subpopulations while maintaining overall calibration. However, multicalibrated models can exhibit a higher percent calibration error among groups with lower base rates than groups with higher base rates. As a result, it is possible for a decision-maker to learn to trust or distrust model predictions for specific groups. To alleviate this, we propose , a criteria that constrains the percent calibration error among groups and within prediction bins. We prove that satisfying proportional multicalibration bounds a model's multicalibration as well its , a fairness criteria that directly measures how closely a model approximates sufficiency. Therefore, proportionally calibrated models limit the ability of decision makers to distinguish between model performance on different patient groups, which may make the models more trustworthy in practice. We provide an efficient algorithm for post-processing risk prediction models for proportional multicalibration and evaluate it empirically. We conduct simulation studies and investigate a real-world application of PMC-postprocessing to prediction of emergency department patient admissions. We observe that proportional multicalibration is a promising criteria for controlling simultaneous measures of calibration fairness of a model over intersectional groups with virtually no cost in terms of classification performance.

摘要

在风险预测环境中,公平校准是一种广泛期望的公平标准。衡量和实现公平校准的一种方法是使用多校准。多校准在保持总体校准的同时,限制了灵活定义的子群体之间的校准误差。然而,与高基础率的群体相比,多校准模型在低基础率的群体中可能表现出更高的校准误差百分比。因此,决策者有可能学会信任或不信任特定群体的模型预测。为了缓解这一问题,我们提出了一种标准,该标准限制了群体之间以及预测区间内的校准误差百分比。我们证明,满足比例多校准既限制了模型的多校准,也限制了其 ,这是一种直接衡量模型接近充分性程度的公平标准。因此,经过比例校准的模型限制了决策者区分不同患者群体模型性能的能力,这可能使模型在实践中更值得信赖。我们提供了一种用于对风险预测模型进行后处理以实现比例多校准的高效算法,并对其进行了实证评估。我们进行了模拟研究,并调查了比例多校准后处理在急诊科患者入院预测中的实际应用。我们观察到,比例多校准是一种很有前景的标准,用于控制模型在交叉群体中的校准公平性的同时测量,且在分类性能方面几乎没有成本。

相似文献

8

本文引用的文献

3
Mitigating selection bias in organ allocation models.减轻器官分配模型中的选择偏差。
BMC Med Res Methodol. 2021 Sep 21;21(1):191. doi: 10.1186/s12874-021-01379-7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验