Suppr超能文献

客观的可穿戴测量指标与脊髓刺激系统患者自我报告的慢性疼痛水平相关。

Objective wearable measures correlate with self-reported chronic pain levels in people with spinal cord stimulation systems.

作者信息

Patterson Denis G, Wilson Derron, Fishman Michael A, Moore Gregory, Skaribas Ioannis, Heros Robert, Dehghan Soroush, Ross Erika, Kyani Anahita

机构信息

Nevada Advanced Pain Specialists, Reno, NV, USA.

Goodman Campbell Brain & Spine, Carmel, IN, USA.

出版信息

NPJ Digit Med. 2023 Aug 15;6(1):146. doi: 10.1038/s41746-023-00892-x.

Abstract

Spinal Cord Stimulation (SCS) is a well-established therapy for treating chronic pain. However, perceived treatment response to SCS therapy may vary among people with chronic pain due to diverse needs and backgrounds. Patient Reported Outcomes (PROs) from standard survey questions do not provide the full picture of what has happened to a patient since their last visit, and digital PROs require patients to visit an app or otherwise regularly engage with software. This study aims to assess the feasibility of using digital biomarkers collected from wearables during SCS treatment to predict pain and PRO outcomes. Twenty participants with chronic pain were recruited and implanted with SCS. During the six months of the study, activity and physiological metrics were collected and data from 15 participants was used to develop a machine learning pipeline to objectively predict pain levels and categories of PRO measures. The model reached an accuracy of 0.768 ± 0.012 in predicting the pain intensity of mild, moderate, and severe. Feature importance analysis showed that digital biomarkers from the smartwatch such as heart rate, heart rate variability, step count, and stand time can contribute to modeling different aspects of pain. The results of the study suggest that wearable biomarkers can be used to predict therapy outcomes in people with chronic pain, enabling continuous, real-time monitoring of patients during the use of implanted therapies.

摘要

脊髓刺激(SCS)是一种治疗慢性疼痛的成熟疗法。然而,由于需求和背景的多样性,慢性疼痛患者对SCS疗法的治疗反应可能各不相同。标准调查问卷中的患者报告结局(PRO)并不能全面反映患者自上次就诊以来的情况,而数字化PRO则要求患者访问应用程序或以其他方式定期与软件互动。本研究旨在评估在SCS治疗期间使用从可穿戴设备收集的数字生物标志物来预测疼痛和PRO结局的可行性。招募了20名慢性疼痛患者并植入了SCS。在研究的六个月期间,收集了活动和生理指标,并使用15名参与者的数据开发了一个机器学习流程,以客观地预测疼痛水平和PRO测量类别。该模型在预测轻度、中度和重度疼痛强度方面的准确率达到了0.768±0.012。特征重要性分析表明,智能手表的数字生物标志物,如心率、心率变异性、步数和站立时间,有助于对疼痛的不同方面进行建模。研究结果表明,可穿戴生物标志物可用于预测慢性疼痛患者的治疗结局,从而在植入式治疗使用期间对患者进行持续、实时监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5c/10427619/2e74efb7d8f3/41746_2023_892_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验