Suppr超能文献

基于域自适应的隐私保护联邦学习在多疾病眼部疾病识别中的应用。

Privacy-Preserving Federated Learning With Domain Adaptation for Multi-Disease Ocular Disease Recognition.

出版信息

IEEE J Biomed Health Inform. 2024 Jun;28(6):3219-3227. doi: 10.1109/JBHI.2023.3305685. Epub 2024 Jun 6.

Abstract

As one of the effective ways of ocular disease recognition, early fundus screening can help patients avoid unrecoverable blindness. Although deep learning is powerful for image-based ocular disease recognition, the performance mainly benefits from a large number of labeled data. For ocular disease, data collection and annotation in a single site usually take a lot of time. If multi-site data are obtained, there are two main issues: 1) the data privacy is easy to be leaked; 2) the domain gap among sites will influence the recognition performance. Inspired by the above, first, a Gaussian randomized mechanism is adopted in local sites, which are then engaged in a global model to preserve the data privacy of local sites and models. Second, to bridge the domain gap among different sites, a two-step domain adaptation method is introduced, which consists of a domain confusion module and a multi-expert learning strategy. Based on the above, a privacy-preserving federated learning framework with domain adaptation is constructed. In the experimental part, a multi-disease early fundus screening dataset, including a detailed ablation study and four experimental settings, is used to show the stepwise performance, which verifies the efficiency of our proposed framework.

摘要

作为眼部疾病识别的有效方法之一,早期眼底筛查有助于患者避免不可逆转的失明。尽管深度学习在基于图像的眼部疾病识别方面具有强大的功能,但它的性能主要受益于大量的标记数据。对于眼部疾病,在单个站点收集和注释数据通常需要大量时间。如果获得多站点数据,则存在两个主要问题:1)数据隐私容易泄露;2)站点之间的域间隙会影响识别性能。受此启发,首先,在本地站点采用高斯随机化机制,然后参与全局模型以保护本地站点和模型的数据隐私。其次,为了弥合不同站点之间的域差距,引入了两步域自适应方法,该方法由域混淆模块和多专家学习策略组成。在此基础上,构建了一个具有域自适应的隐私保护联邦学习框架。在实验部分,使用一个多疾病早期眼底筛查数据集,包括详细的消融研究和四个实验设置,来逐步展示性能,验证了我们提出的框架的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验