Suppr超能文献

生物医学数据的多标签分类

Multi‑label classification of biomedical data.

作者信息

Diakou Io, Iliopoulos Eddie, Papakonstantinou Eleni, Dragoumani Konstantina, Yapijakis Christos, Iliopoulos Costas, Spandidos Demetrios A, Chrousos George P, Eliopoulos Elias, Vlachakis Dimitrios

机构信息

Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece.

University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece.

出版信息

Med Int (Lond). 2024 Sep 9;4(6):68. doi: 10.3892/mi.2024.192. eCollection 2024 Nov-Dec.

Abstract

Biomedical datasets constitute a rich source of information, containing multivariate data collected during medical practice. In spite of inherent challenges, such as missing or imbalanced data, these types of datasets are increasingly utilized as a basis for the construction of predictive machine-learning models. The prediction of disease outcomes and complications could inform the process of decision-making in the hospital setting and ensure the best possible patient management according to the patient's features. Multi-label classification algorithms, which are trained to assign a set of labels to input samples, can efficiently tackle outcome prediction tasks. Myocardial infarction (MI) represents a widespread health risk, accounting for a significant portion of heart disease-related mortality. Moreover, the danger of potential complications occurring in patients with MI during their period of hospitalization underlines the need for systems to efficiently assess the risks of patients with MI. In order to demonstrate the critical role of applying machine-learning methods in medical challenges, in the present study, a set of multi-label classifiers was evaluated on a public dataset of MI-related complications to predict the outcomes of hospitalized patients with MI, based on a set of input patient features. Such methods can be scaled through the use of larger datasets of patient records, along with fine-tuning for specific patient sub-groups or patient populations in specific regions, to increase the performance of these approaches. Overall, a prediction system based on classifiers trained on patient records may assist healthcare professionals in providing personalized care and efficient monitoring of high-risk patient subgroups.

摘要

生物医学数据集构成了丰富的信息来源,包含在医疗实践中收集的多变量数据。尽管存在诸如数据缺失或不平衡等固有挑战,但这些类型的数据集越来越多地被用作构建预测性机器学习模型的基础。疾病结局和并发症的预测可以为医院环境中的决策过程提供信息,并根据患者的特征确保尽可能最佳的患者管理。多标签分类算法经过训练可为输入样本分配一组标签,能够有效地处理结局预测任务。心肌梗死(MI)是一种广泛存在的健康风险,在与心脏病相关的死亡率中占很大比例。此外,MI患者在住院期间发生潜在并发症的危险凸显了需要有系统来有效评估MI患者的风险。为了证明应用机器学习方法在医疗挑战中的关键作用,在本研究中,基于一组输入的患者特征,在一个与MI相关并发症的公共数据集上评估了一组多标签分类器,以预测MI住院患者的结局。此类方法可以通过使用更大的患者记录数据集进行扩展,并针对特定患者亚组或特定地区的患者群体进行微调,以提高这些方法的性能。总体而言,基于在患者记录上训练的分类器的预测系统可以帮助医疗保健专业人员提供个性化护理并对高风险患者亚组进行有效监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab4/11411592/225b69e67e85/mi-04-06-00192-g00.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验