Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
Neuromodulation. 2021 Jul;24(5):843-853. doi: 10.1111/ner.13137. Epub 2020 Mar 8.
Transcranial electrical stimulation (tES) is a promising tool for modulating neural activity, but tES has poor penetrability and spatiotemporal resolution compared to invasive techniques like deep brain stimulation (DBS). Interferential strategies for alternating-current stimulation (IF-tACS) and pulsed/intersectional strategies for transcranial direct-current stimulation (IS-tDCS) address some of the limitations of tES, but the comparative advantages and disadvantages of these new techniques is not well understood. This study's objective was to evaluate the suprathreshold and subthreshold membrane dynamics of neurons in response to IF-tACS and IS-tDCS.
We analyzed the biophysics of IF-tACS and IS-tDCS using a bioelectric field model of tES. Neural responses were quantified for suprathreshold generation of action potentials in axons and for subthreshold modulation of membrane dynamics in spiking pyramidal neurons.
IF-tACS and IS-tDCS could not directly activate axons at or below 10 mA, but within this current range, these fields were able to modulate, albeit indirectly, spiking activity in the neuron model. IF-tACS facilitated phase synchronization similar to tACS, and IS-tDCS enhanced and suppressed spiking activity similar to tDCS; however, in either case, the modulatory effects of these fields were less potent than their standard counterparts at a matched field intensity. Moreover, neither IF-tACS nor IS-tDCS improved the spatial selectivity of their parent strategies.
Enhancing the spatiotemporal precision and penetrability of tES with interferential and intersectional strategies is possible at the human scale. However, IF-tACS or IS-tDCS will likely require spatial multiplexing with multiple simultaneous sources to counteract their reduced potency, compared to standard techniques, to maintain stimulation currents at tolerable levels.
经颅电刺激(tES)是一种很有前途的调节神经活动的工具,但与深部脑刺激(DBS)等侵入性技术相比,tES 的穿透性和时空分辨率较差。用于交流电刺激的干涉策略(IF-tACS)和用于经颅直流电刺激的脉冲/交叉策略(IS-tDCS)解决了 tES 的一些局限性,但这些新技术的相对优势和劣势尚不清楚。本研究的目的是评估神经元对 IF-tACS 和 IS-tDCS 的阈上和阈下膜动力学反应。
我们使用 tES 的生物电场模型分析了 IF-tACS 和 IS-tDCS 的生物物理学。对于轴突中超阈值产生动作电位和在有尖峰的锥体神经元中超阈值调制膜动力学,我们对神经反应进行了量化。
IF-tACS 和 IS-tDCS 不能直接在 10 mA 或以下激活轴突,但在这个电流范围内,这些场能够调节神经元模型中的尖峰活动,尽管是间接的。IF-tACS 促进了类似于 tACS 的相位同步,而 IS-tDCS 增强和抑制了类似于 tDCS 的尖峰活动;然而,在任何一种情况下,这些场的调制效果都不如它们在匹配场强时的标准场弱。此外,IF-tACS 或 IS-tDCS 都没有提高其母体策略的空间选择性。
在人体尺度上,使用干涉和交叉策略增强 tES 的时空精度和穿透性是可能的。然而,与标准技术相比,IF-tACS 或 IS-tDCS 可能需要空间复用多个同时的源,以抵消其强度降低的影响,从而在可耐受的电流水平下保持刺激。