Suppr超能文献

从可穿戴设备数据中高效评估心率和体温的昼夜节律的真实动态。

Efficient assessment of real-world dynamics of circadian rhythms in heart rate and body temperature from wearable data.

机构信息

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA.

Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

J R Soc Interface. 2023 Aug;20(205):20230030. doi: 10.1098/rsif.2023.0030. Epub 2023 Aug 23.

Abstract

Laboratory studies have made unprecedented progress in understanding circadian physiology. Quantifying circadian rhythms outside of laboratory settings is necessary to translate these findings into real-world clinical practice. Wearables have been considered promising way to measure these rhythms. However, their limited validation remains an open problem. One major barrier to implementing large-scale validation studies is the lack of reliable and efficient methods for circadian assessment from wearable data. Here, we propose an approximation-based least-squares method to extract underlying circadian rhythms from wearable measurements. Its computational cost is ∼ 300-fold lower than that of previous work, enabling its implementation in smartphones with low computing power. We test it on two large-scale real-world wearable datasets: [Formula: see text] of body temperature data from cancer patients and ∼ 184 000 days of heart rate and activity data collected from the 'Social Rhythms' mobile application. This shows successful extraction of real-world dynamics of circadian rhythms. We also identify a reasonable harmonic model to analyse wearable data. Lastly, we show our method has broad applicability in circadian studies by embedding it into a Kalman filter that infers the state space of the molecular clocks in tissues. Our approach facilitates the translation of scientific advances in circadian fields into actual improvements in health.

摘要

实验室研究在理解生物钟生理学方面取得了前所未有的进展。要将这些发现转化为实际的临床实践,就有必要在实验室环境之外量化生物钟节律。可穿戴设备被认为是测量这些节律的有前途的方法。然而,它们的有限验证仍然是一个悬而未决的问题。实施大规模验证研究的一个主要障碍是缺乏从可穿戴设备数据中进行生物钟评估的可靠和高效方法。在这里,我们提出了一种基于逼近的最小二乘法,从可穿戴测量中提取潜在的生物钟节律。它的计算成本比以前的工作低约 300 倍,使得它可以在计算能力较低的智能手机中实现。我们在两个大规模的真实世界可穿戴数据集上对其进行了测试:来自癌症患者的[Formula: see text]体温数据和来自“社交节律”移动应用程序收集的约 184 000 天的心率和活动数据。这表明成功提取了生物钟节律的真实动态。我们还确定了一个合理的谐波模型来分析可穿戴数据。最后,我们通过将其嵌入到推断组织中分子钟状态空间的卡尔曼滤波器中,展示了我们的方法在生物钟研究中的广泛适用性。我们的方法促进了生物钟领域科学进展向实际健康改善的转化。

相似文献

1
Efficient assessment of real-world dynamics of circadian rhythms in heart rate and body temperature from wearable data.
J R Soc Interface. 2023 Aug;20(205):20230030. doi: 10.1098/rsif.2023.0030. Epub 2023 Aug 23.
3
Distinct Circadian Assessments From Wearable Data Reveal Social Distancing Promoted Internal Desynchrony Between Circadian Markers.
Front Digit Health. 2021 Nov 16;3:727504. doi: 10.3389/fdgth.2021.727504. eCollection 2021.
4
Uncovering personalized glucose responses and circadian rhythms from multiple wearable biosensors with Bayesian dynamical modeling.
Cell Rep Methods. 2023 Jul 31;3(8):100545. doi: 10.1016/j.crmeth.2023.100545. eCollection 2023 Aug 28.
5
A method for characterizing daily physiology from widely used wearables.
Cell Rep Methods. 2021 Aug 23;1(4). doi: 10.1016/j.crmeth.2021.100058. Epub 2021 Jul 29.
7
Taking the time for our bodies: How wearables can be used to assess circadian physiology.
Cell Rep Methods. 2021 Aug 23;1(4):100067. doi: 10.1016/j.crmeth.2021.100067.
9
Using Wearable Skin Temperature Data to Advance Tracking and Characterization of the Menstrual Cycle in a Real-World Setting.
J Biol Rhythms. 2024 Aug;39(4):331-350. doi: 10.1177/07487304241247893. Epub 2024 May 20.

引用本文的文献

1
Evidence for Internal Misalignment of Circadian Rhythms in Youth With Emerging Mood Disorders.
J Biol Rhythms. 2025 Jul 15:7487304251349408. doi: 10.1177/07487304251349408.
2
Seasonal timing and interindividual differences in shiftwork adaptation.
NPJ Digit Med. 2025 May 28;8(1):300. doi: 10.1038/s41746-025-01678-z.
3
Wearables in Chronomedicine and Interpretation of Circadian Health.
Diagnostics (Basel). 2025 Jan 30;15(3):327. doi: 10.3390/diagnostics15030327.
4
Circadian rhythms and cancer: implications for timing in therapy.
Discov Oncol. 2024 Dec 18;15(1):767. doi: 10.1007/s12672-024-01643-4.
5
The real-world association between digital markers of circadian disruption and mental health risks.
NPJ Digit Med. 2024 Dec 5;7(1):355. doi: 10.1038/s41746-024-01348-6.

本文引用的文献

3
Distinct Circadian Assessments From Wearable Data Reveal Social Distancing Promoted Internal Desynchrony Between Circadian Markers.
Front Digit Health. 2021 Nov 16;3:727504. doi: 10.3389/fdgth.2021.727504. eCollection 2021.
4
A method for characterizing daily physiology from widely used wearables.
Cell Rep Methods. 2021 Aug 23;1(4). doi: 10.1016/j.crmeth.2021.100058. Epub 2021 Jul 29.
5
High-frequency temperature monitoring for early detection of febrile adverse events in patients with cancer.
Cancer Cell. 2021 Sep 13;39(9):1167-1168. doi: 10.1016/j.ccell.2021.07.019. Epub 2021 Aug 12.
6
Telemonitored Human Circadian Temperature Dynamics During Daily Routine.
Front Physiol. 2021 May 10;12:659973. doi: 10.3389/fphys.2021.659973. eCollection 2021.
8
A Tangled Threesome: Circadian Rhythm, Body Temperature Variations, and the Immune System.
Biology (Basel). 2021 Jan 18;10(1):65. doi: 10.3390/biology10010065.
9
Circadian rhythmicity of body temperature and metabolism.
Temperature (Austin). 2020 Apr 17;7(4):321-362. doi: 10.1080/23328940.2020.1743605. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验