Department of Mechanical & Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States.
State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yun Nan 650000, China.
ACS Appl Mater Interfaces. 2023 Sep 6;15(35):41892-41905. doi: 10.1021/acsami.3c07816. Epub 2023 Aug 24.
3D printing of hydrogels has been widely explored for the rapid fabrication of complex soft structures and devices. However, using 3D printing to customize hydrogels with both adequate adhesiveness and toughness remains a fundamental challenge. Here, we demonstrate mussel-inspired (polydopamine) PDA hydrogel through the incorporation of a classical double network (2-acrylamido-2-methylpropanesulfonic acid) PAMPS/(polyacrylamide) PAAm to achieve simultaneously tailored adhesiveness, toughness, and biocompatibility and validate the 3D printability of such a hydrogel into customized architectures. The strategy of combining PDA with PAMPS/PAAm hydrogels leads to favorable adhesion on either hydrophilic or hydrophobic surfaces. The hydrogel also shows excellent flexibility, which is attributed to the reversible cross-linking of PDA and PAMPS, together with the long-chain PAAm cross-linking network. Among them, the reversible cross-linking of PDA and PAMPS is capable of dissipating mechanical energy under deformation. Meanwhile, the long-chain PAAm network contributes to maintaining a high deformation capability. We establish a theoretical framework to quantify the contribution of the interpenetrating networks to the overall toughness of the hydrogel, which also provides guidance for the rational design of materials with the desired properties. Our work manifests a new paradigm of printing adhesive, tough, and biocompatible interpenetrating network hydrogels to meet the requirements of broad potential applications in biomedical engineering, soft robotics, and intelligent and superabsorbent devices.
3D 打印水凝胶已被广泛探索用于快速制造复杂的软结构和器件。然而,使用 3D 打印技术定制具有足够粘附性和韧性的水凝胶仍然是一个基本挑战。在这里,我们通过将经典的双网络(2-丙烯酰胺基-2-甲基丙磺酸)PAMPS/(聚丙烯酰胺)PAAm 掺入贻贝类(聚多巴胺)PDA 水凝胶中,展示了一种基于贻贝类灵感的 PDA 水凝胶,从而实现了同时定制粘附性、韧性和生物相容性,并验证了这种水凝胶的 3D 打印性能可以转化为定制的结构。将 PDA 与 PAMPS/PAAm 水凝胶结合的策略导致其在亲水或疏水表面都具有良好的粘附性。该水凝胶还表现出优异的柔韧性,这归因于 PDA 和 PAMPS 的可逆交联,以及长链 PAAm 交联网络。其中,PDA 和 PAMPS 的可逆交联能够在变形下耗散机械能。同时,长链 PAAm 网络有助于保持高变形能力。我们建立了一个理论框架来量化互穿网络对水凝胶整体韧性的贡献,这也为具有所需性能的材料的合理设计提供了指导。我们的工作展示了一种新的打印模式,即打印具有粘附性、韧性和生物相容性的互穿网络水凝胶,以满足在生物医学工程、软机器人、智能和超吸水性器件等广泛潜在应用中的要求。