De Micco Veronica, Amitrano Chiara, Mastroleo Felice, Aronne Giovanna, Battistelli Alberto, Carnero-Diaz Eugenie, De Pascale Stefania, Detrell Gisela, Dussap Claude-Gilles, Ganigué Ramon, Jakobsen Øyvind Mejdell, Poulet Lucie, Van Houdt Rob, Verseux Cyprien, Vlaeminck Siegfried E, Willaert Ronnie, Leys Natalie
Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy.
Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), 2400, Mol, Belgium.
NPJ Microgravity. 2023 Aug 24;9(1):69. doi: 10.1038/s41526-023-00317-9.
Long-term human space exploration missions require environmental control and closed Life Support Systems (LSS) capable of producing and recycling resources, thus fulfilling all the essential metabolic needs for human survival in harsh space environments, both during travel and on orbital/planetary stations. This will become increasingly necessary as missions reach farther away from Earth, thereby limiting the technical and economic feasibility of resupplying resources from Earth. Further incorporation of biological elements into state-of-the-art (mostly abiotic) LSS, leading to bioregenerative LSS (BLSS), is needed for additional resource recovery, food production, and waste treatment solutions, and to enable more self-sustainable missions to the Moon and Mars. There is a whole suite of functions crucial to sustain human presence in Low Earth Orbit (LEO) and successful settlement on Moon or Mars such as environmental control, air regeneration, waste management, water supply, food production, cabin/habitat pressurization, radiation protection, energy supply, and means for transportation, communication, and recreation. In this paper, we focus on air, water and food production, and waste management, and address some aspects of radiation protection and recreation. We briefly discuss existing knowledge, highlight open gaps, and propose possible future experiments in the short-, medium-, and long-term to achieve the targets of crewed space exploration also leading to possible benefits on Earth.
长期载人太空探索任务需要环境控制和封闭的生命支持系统(LSS),该系统能够生产和循环利用资源,从而满足人类在恶劣太空环境中生存的所有基本代谢需求,无论是在太空旅行期间还是在轨道/行星空间站上。随着任务离地球越来越远,这将变得越来越必要,因为从地球补给资源的技术和经济可行性将受到限制。需要将生物元素进一步纳入先进的(主要是非生物的)生命支持系统,从而形成生物再生生命支持系统(BLSS),以实现更多的资源回收、食物生产和废物处理解决方案,并使前往月球和火星的任务更具自我维持能力。有一整套功能对于维持人类在低地球轨道(LEO)的存在以及在月球或火星上的成功定居至关重要,例如环境控制、空气再生、废物管理、供水、食物生产、舱室/栖息地增压、辐射防护、能源供应以及运输、通信和娱乐手段。在本文中,我们重点关注空气、水和食物生产以及废物管理,并探讨辐射防护和娱乐的一些方面。我们简要讨论现有知识,突出存在的差距,并提出短期、中期和长期可能的未来实验,以实现载人太空探索目标,同时也为地球带来可能的益处。