Suppr超能文献

CT 放射组学预测卵巢癌中 CXCL9 的表达和生存。

CT radiomics prediction of CXCL9 expression and survival in ovarian cancer.

机构信息

School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.

Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.

出版信息

J Ovarian Res. 2023 Aug 30;16(1):180. doi: 10.1186/s13048-023-01248-5.

Abstract

BACKGROUND

C-X-C motif chemokine ligand 9 (CXCL9), which is involved in the pathological processes of various human cancers, has become a hot topic in recent years. We developed a radiomic model to identify CXCL9 status in ovarian cancer (OC) and evaluated its prognostic significance.

METHODS

We analyzed enhanced CT scans, transcriptome sequencing data, and corresponding clinical characteristics of CXCL9 in OC using the TCIA and TCGA databases. We used the repeat least absolute shrinkage (LASSO) and recursive feature elimination(RFE) methods to determine radiomic features after extraction and normalization. We constructed a radiomic model for CXCL9 prediction based on logistic regression and internal tenfold cross-validation. Finally, a 60-month overall survival (OS) nomogram was established to analyze survival data based on Cox regression.

RESULTS

CXCL9 mRNA levels and several other genes involving in T-cell infiltration were significantly relevant to OS in OC patients. The radiomic score (rad_score) of our radiomic model was calculated based on the five features for CXCL9 prediction. The areas under receiver operating characteristic (ROC) curves (AUC-ROC) for the training cohort was 0.781, while that for the validation cohort was 0.743. Patients with a high rad_score had better overall survival (P < 0.001). In addition, calibration curves and decision curve analysis (DCA) showed good consistency between the prediction and actual observations, demonstrating the clinical utility of our model.

CONCLUSION

In patients with OC, the radiomics signature(RS) of CT scans can distinguish the level of CXCL9 expression and predict prognosis, potentially fulfilling the ultimate purpose of precision medicine.

摘要

背景

C-X-C 基序趋化因子配体 9(CXCL9)参与多种人类癌症的病理过程,近年来已成为研究热点。我们开发了一种放射组学模型,以识别卵巢癌(OC)中的 CXCL9 状态,并评估其预后意义。

方法

我们使用 TCIA 和 TCGA 数据库分析了 OC 中 CXCL9 的增强 CT 扫描、转录组测序数据和相应的临床特征。我们使用重复最小绝对值收缩和选择(LASSO)和递归特征消除(RFE)方法在提取和归一化后确定放射组学特征。我们基于逻辑回归和内部十折交叉验证构建了用于 CXCL9 预测的放射组学模型。最后,根据 Cox 回归分析生存数据,建立了 60 个月总生存(OS)列线图。

结果

OC 患者中 CXCL9 mRNA 水平和其他几个涉及 T 细胞浸润的基因与 OS 显著相关。我们的放射组学模型的放射组学评分(rad_score)是基于五个用于预测 CXCL9 的特征计算的。训练队列的受试者工作特征(ROC)曲线下面积(AUC-ROC)为 0.781,验证队列为 0.743。rad_score 较高的患者总生存更好(P<0.001)。此外,校准曲线和决策曲线分析(DCA)表明,预测和实际观察之间具有良好的一致性,证明了我们模型的临床实用性。

结论

在 OC 患者中,CT 扫描的放射组学特征(RS)可以区分 CXCL9 表达水平并预测预后,可能实现精准医学的最终目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c15/10466849/7ffee7b8bcc7/13048_2023_1248_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验