Suppr超能文献

基于噪声辅助多变量经验模式分解和多感受野卷积神经网络的想象言语脑电信号多类分类

Multiclass classification of imagined speech EEG using noise-assisted multivariate empirical mode decomposition and multireceptive field convolutional neural network.

作者信息

Park Hyeong-Jun, Lee Boreom

机构信息

Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.

AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.

出版信息

Front Hum Neurosci. 2023 Aug 10;17:1186594. doi: 10.3389/fnhum.2023.1186594. eCollection 2023.

Abstract

INTRODUCTION

In this study, we classified electroencephalography (EEG) data of imagined speech using signal decomposition and multireceptive convolutional neural network. The imagined speech EEG with five vowels /a/, /e/, /i/, /o/, and /u/, and mute (rest) sounds were obtained from ten study participants.

MATERIALS AND METHODS

First, two different signal decomposition methods were applied for comparison: noise-assisted multivariate empirical mode decomposition and wavelet packet decomposition. Six statistical features were calculated from the decomposed eight sub-frequency bands EEG. Next, all features obtained from each channel of the trial were vectorized and used as the input vector of classifiers. Lastly, EEG was classified using multireceptive field convolutional neural network and several other classifiers for comparison.

RESULTS

We achieved an average classification rate of 73.09 and up to 80.41% in a multiclass (six classes) setup (Chance: 16.67%). In comparison with various other classifiers, significant improvements for other classifiers were achieved (-value < 0.05). From the frequency sub-band analysis, high-frequency band regions and the lowest-frequency band region contain more information about imagined vowel EEG data. The misclassification and classification rate of each vowel imaginary EEG was analyzed through a confusion matrix.

DISCUSSION

Imagined speech EEG can be classified successfully using the proposed signal decomposition method and a convolutional neural network. The proposed classification method for imagined speech EEG can contribute to developing a practical imagined speech-based brain-computer interfaces system.

摘要

引言

在本研究中,我们使用信号分解和多感受野卷积神经网络对想象言语的脑电图(EEG)数据进行分类。从十名研究参与者那里获取了包含五个元音/a/、/e/、/i/、/o/、/u/以及静音(休息)声音的想象言语EEG数据。

材料与方法

首先,应用两种不同的信号分解方法进行比较:噪声辅助多变量经验模式分解和小波包分解。从分解后的八个子频段EEG中计算出六个统计特征。接下来,将试验中每个通道获得的所有特征进行向量化,并用作分类器的输入向量。最后,使用多感受野卷积神经网络和其他几个分类器对EEG进行分类以作比较。

结果

在多类别(六个类别)设置中,我们实现了平均分类率为73.09%,最高可达80.41%(机遇率:16.67%)。与其他各种分类器相比,其他分类器有显著改进(p值<0.05)。通过频率子带分析,高频带区域和最低频带区域包含有关想象元音EEG数据的更多信息。通过混淆矩阵分析了每个元音想象EEG的误分类和分类率。

讨论

使用所提出的信号分解方法和卷积神经网络可以成功地对想象言语EEG进行分类。所提出的想象言语EEG分类方法有助于开发实用的基于想象言语的脑机接口系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验