Suppr超能文献

通过从文本报告中学习,对头 CT 扫描中的颅内异常进行自动检测和定位。

Automatic intracranial abnormality detection and localization in head CT scans by learning from free-text reports.

机构信息

School of Software, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, BNRist, Tsinghua University, Beijing 100084, China.

Institute for Brain and Cognitive Sciences, BNRist, Tsinghua University, Beijing 100084, China.

出版信息

Cell Rep Med. 2023 Sep 19;4(9):101164. doi: 10.1016/j.xcrm.2023.101164. Epub 2023 Aug 21.

Abstract

Deep learning has yielded promising results for medical image diagnosis but relies heavily on manual image annotations, which are expensive to acquire. We present Cross-DL, a cross-modality learning framework for intracranial abnormality detection and localization in head computed tomography (CT) scans by learning from free-text imaging reports. Cross-DL has a discretizer that automatically extracts discrete labels of abnormality types and locations from reports, which are utilized to train an image analyzer by a dynamic multi-instance learning approach. Benefiting from the low annotation cost and a consequent large-scale training set of 28,472 CT scans, Cross-DL achieves accurate performance, with an average area under the receiver operating characteristic curve (AUROC) of 0.956 (95% confidence interval: 0.952-0.959) in detecting 4 abnormality types in 17 regions while accurately localizing abnormalities at the voxel level. An intracranial hemorrhage classification experiment on the external dataset CQ500 achieves an AUROC of 0.928 (0.905-0.951). The model can also help review prioritization.

摘要

深度学习在医学图像诊断方面取得了有前景的成果,但严重依赖于昂贵的手动图像标注。我们提出了 Cross-DL,这是一种跨模态学习框架,通过从自由文本成像报告中学习,用于检测和定位头部 CT 扫描中的颅内异常。Cross-DL 有一个离散化器,可以自动从报告中提取异常类型和位置的离散标签,这些标签被用于通过动态多实例学习方法训练图像分析器。受益于低标注成本和随之而来的 28472 个 CT 扫描的大规模训练集,Cross-DL 实现了准确的性能,在检测 17 个区域的 4 种异常类型时,平均接收者操作特征曲线下的面积(AUROC)为 0.956(95%置信区间:0.952-0.959),而在体素级别准确地定位异常。在外部数据集 CQ500 上进行的颅内出血分类实验中,AUROC 达到 0.928(0.905-0.951)。该模型还可以帮助进行审查优先级排序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1800/10518589/85f39e0cef6c/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验