Suppr超能文献

相似文献

1
Automatic Localization of the Pons and Vermis on Fetal Brain MR Imaging Using a U-Net Deep Learning Model.
AJNR Am J Neuroradiol. 2023 Oct;44(10):1191-1200. doi: 10.3174/ajnr.A7978. Epub 2023 Aug 31.
2
Pons Anteroposterior and Cerebellar Vermis Craniocaudal Diameters in Fetuses With Down Syndrome.
J Ultrasound Med. 2021 Jan;40(1):123-128. doi: 10.1002/jum.15382. Epub 2020 Jun 27.
3
Biometry of the Cerebellar Vermis and Brain Stem in Children: MR Imaging Reference Data from Measurements in 718 Children.
AJNR Am J Neuroradiol. 2019 Nov;40(11):1835-1841. doi: 10.3174/ajnr.A6257. Epub 2019 Oct 17.
4
Accurate measurement of magnetic resonance parkinsonism index by a fully automatic and deep learning quantification pipeline.
Eur Radiol. 2023 Dec;33(12):8844-8853. doi: 10.1007/s00330-023-09979-1. Epub 2023 Jul 22.
5
Image Quality Assessment of Fetal Brain MRI Using Multi-Instance Deep Learning Methods.
J Magn Reson Imaging. 2021 Sep;54(3):818-829. doi: 10.1002/jmri.27649. Epub 2021 Apr 23.
6
MR imaging of the fetal cerebellar vermis: Biometric predictors of adverse neurologic outcome.
J Magn Reson Imaging. 2016 Nov;44(5):1284-1292. doi: 10.1002/jmri.25270. Epub 2016 Apr 18.
7
The fetal vermis, pons and brainstem: normal longitudinal development as shown by dedicated neurosonography.
J Matern Fetal Neonatal Med. 2013 May;26(8):757-62. doi: 10.3109/14767058.2012.755508. Epub 2013 Jan 13.
10
Evaluation of Spatial Attentive Deep Learning for Automatic Placental Segmentation on Longitudinal MRI.
J Magn Reson Imaging. 2023 May;57(5):1533-1540. doi: 10.1002/jmri.28403. Epub 2022 Aug 16.

引用本文的文献

1
Fetal MRI Analysis of Corpus Callosal Abnormalities: Classification, and Associated Anomalies.
Diagnostics (Basel). 2024 Feb 15;14(4):430. doi: 10.3390/diagnostics14040430.

本文引用的文献

2
Review of deep learning and artificial intelligence models in fetal brain magnetic resonance imaging.
World J Clin Cases. 2023 Jun 6;11(16):3725-3735. doi: 10.12998/wjcc.v11.i16.3725.
3
Deep Learning for Image Enhancement and Correction in Magnetic Resonance Imaging-State-of-the-Art and Challenges.
J Digit Imaging. 2023 Feb;36(1):204-230. doi: 10.1007/s10278-022-00721-9. Epub 2022 Nov 2.
4
Attention-guided deep learning for gestational age prediction using fetal brain MRI.
Sci Rep. 2022 Jan 26;12(1):1408. doi: 10.1038/s41598-022-05468-5.
5
Automated detection and reacquisition of motion-degraded images in fetal HASTE imaging at 3 T.
Magn Reson Med. 2022 Apr;87(4):1914-1922. doi: 10.1002/mrm.29106. Epub 2021 Dec 10.
6
Is fetal MRI ready for neuroimaging prime time? An examination of progress and remaining areas for development.
Dev Cogn Neurosci. 2021 Oct;51:100999. doi: 10.1016/j.dcn.2021.100999. Epub 2021 Aug 4.
7
Automatic linear measurements of the fetal brain on MRI with deep neural networks.
Int J Comput Assist Radiol Surg. 2021 Sep;16(9):1481-1492. doi: 10.1007/s11548-021-02436-8. Epub 2021 Jun 29.
8
Association of gestational age with MRI-based biometrics of brain development in fetuses.
BMC Med Imaging. 2020 Nov 25;20(1):125. doi: 10.1186/s12880-020-00525-9.
9
Abnormalities of the Fetal Central Nervous System: Prenatal US Diagnosis with Postnatal Correlation.
Radiographics. 2020 Sep-Oct;40(5):1458-1472. doi: 10.1148/rg.2020200034. Epub 2020 Jul 24.
10
An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI.
Neuroimage. 2020 Feb 1;206:116324. doi: 10.1016/j.neuroimage.2019.116324. Epub 2019 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验