Suppr超能文献

标准化放射组学算法对不同软件平台生成的掩模的敏感性。

Sensitivity of standardised radiomics algorithms to mask generation across different software platforms.

机构信息

School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK.

出版信息

Sci Rep. 2023 Sep 2;13(1):14419. doi: 10.1038/s41598-023-41475-w.

Abstract

The field of radiomics continues to converge on a standardised approach to image processing and feature extraction. Conventional radiomics requires a segmentation. Certain features can be sensitive to small contour variations. The industry standard for medical image communication stores contours as coordinate points that must be converted to a binary mask before image processing can take place. This study investigates the impact that the process of converting contours to mask can have on radiomic features calculation. To this end we used a popular open dataset for radiomics standardisation and we compared the impact of masks generated by importing the dataset into 4 medical imaging software. We interfaced our previously standardised radiomics platform with these software using their published application programming interface to access image volume, masks and other data needed to calculate features. Additionally, we used super-sampling strategies to systematically evaluate the impact of contour data pre processing methods on radiomic features calculation. Finally, we evaluated the effect that using different mask generation approaches could have on patient clustering in a multi-center radiomics study. The study shows that even when working on the same dataset, mask and feature discrepancy occurs depending on the contour to mask conversion technique implemented in various medical imaging software. We show that this also affects patient clustering and potentially radiomic-based modelling in multi-centre studies where a mix of mask generation software is used. We provide recommendations to negate this issue and facilitate reproducible and reliable radiomics.

摘要

放射组学领域继续朝着图像预处理和特征提取的标准化方法靠拢。传统的放射组学需要进行分割。某些特征可能对小的轮廓变化敏感。医疗图像通信的行业标准将轮廓存储为坐标点,在进行图像处理之前,必须将其转换为二进制掩模。本研究调查了将轮廓转换为掩模的过程对放射组学特征计算的影响。为此,我们使用了一个流行的放射组学标准化开放数据集,并比较了将数据集导入 4 种医学成像软件中生成的掩模的影响。我们使用已发布的应用程序编程接口将我们之前标准化的放射组学平台与这些软件接口,以访问计算特征所需的图像体积、掩模和其他数据。此外,我们使用超采样策略系统地评估了轮廓数据预处理方法对放射组学特征计算的影响。最后,我们评估了在多中心放射组学研究中使用不同的掩模生成方法对患者聚类的影响。研究表明,即使在处理相同的数据集时,也会根据各种医学成像软件中实现的轮廓到掩模转换技术,出现掩模和特征的差异。我们表明,这也会影响多中心研究中的患者聚类和潜在的基于放射组学的建模,其中使用了各种掩模生成软件。我们提供了一些建议来解决这个问题,并促进可重复和可靠的放射组学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10cb/10475062/d9269d0769d9/41598_2023_41475_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验