Suppr超能文献

机器学习算法预测蛛网膜下腔出血后迟发性脑缺血:系统评价和荟萃分析。

Machine Learning Algorithms to Predict Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: A Systematic Review and Meta-analysis.

机构信息

School of Medicine, University of São Paulo, São Paulo, SP, Brazil.

Department of Neurology, University of São Paulo, São Paulo, SP, Brazil.

出版信息

Neurocrit Care. 2024 Jun;40(3):1171-1181. doi: 10.1007/s12028-023-01832-z. Epub 2023 Sep 5.

Abstract

Delayed cerebral ischemia (DCI) is a common and severe complication after subarachnoid hemorrhage (SAH). Logistic regression (LR) is the primary method to predict DCI, but it has low accuracy. This study assessed whether other machine learning (ML) models can predict DCI after SAH more accurately than conventional LR. PubMed, Embase, and Web of Science were systematically searched for studies directly comparing LR and other ML algorithms to forecast DCI in patients with SAH. Our main outcome was the accuracy measurement, represented by sensitivity, specificity, and area under the receiver operating characteristic. In the six studies included, comprising 1828 patients, about 28% (519) developed DCI. For LR models, the pooled sensitivity was 0.71 (95% confidence interval [CI] 0.57-0.84; p < 0.01) and the pooled specificity was 0.63 (95% CI 0.42-0.85; p < 0.01). For ML models, the pooled sensitivity was 0.74 (95% CI 0.61-0.86; p < 0.01) and the pooled specificity was 0.78 (95% CI 0.71-0.86; p = 0.02). Our results suggest that ML algorithms performed better than conventional LR at predicting DCI.Trial Registration: PROSPERO (International Prospective Register of Systematic Reviews) CRD42023441586; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=441586.

摘要

迟发性脑缺血(DCI)是蛛网膜下腔出血(SAH)后的常见且严重的并发症。逻辑回归(LR)是预测 DCI 的主要方法,但准确性较低。本研究评估了其他机器学习(ML)模型是否可以比传统的 LR 更准确地预测 SAH 后的 DCI。我们系统地检索了 PubMed、Embase 和 Web of Science 中的研究,以直接比较 LR 和其他 ML 算法预测 SAH 患者 DCI 的能力。我们的主要结局是准确性测量,以敏感性、特异性和受试者工作特征曲线下面积表示。在纳入的 6 项研究中,共包括 1828 名患者,约 28%(519 名)发生了 DCI。对于 LR 模型,汇总敏感性为 0.71(95%置信区间 [CI] 0.57-0.84;p<0.01),汇总特异性为 0.63(95% CI 0.42-0.85;p<0.01)。对于 ML 模型,汇总敏感性为 0.74(95% CI 0.61-0.86;p<0.01),汇总特异性为 0.78(95% CI 0.71-0.86;p=0.02)。我们的结果表明,ML 算法在预测 DCI 方面优于传统 LR。试验注册:PROSPERO(国际前瞻性系统评价注册库)CRD42023441586;https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=441586。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验