Suppr超能文献

深度学习磁共振成像胎儿脑分割综述。

Review on deep learning fetal brain segmentation from Magnetic Resonance images.

机构信息

NeuroImaging Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy; Department of Information Engineering, University of Padua, Padua, Italy.

Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.

出版信息

Artif Intell Med. 2023 Sep;143:102608. doi: 10.1016/j.artmed.2023.102608. Epub 2023 Jun 10.

Abstract

Brain segmentation is often the first and most critical step in quantitative analysis of the brain for many clinical applications, including fetal imaging. Different aspects challenge the segmentation of the fetal brain in magnetic resonance imaging (MRI), such as the non-standard position of the fetus owing to his/her movements during the examination, rapid brain development, and the limited availability of imaging data. In recent years, several segmentation methods have been proposed for automatically partitioning the fetal brain from MR images. These algorithms aim to define regions of interest with different shapes and intensities, encompassing the entire brain, or isolating specific structures. Deep learning techniques, particularly convolutional neural networks (CNNs), have become a state-of-the-art approach in the field because they can provide reliable segmentation results over heterogeneous datasets. Here, we review the deep learning algorithms developed in the field of fetal brain segmentation and categorize them according to their target structures. Finally, we discuss the perceived research gaps in the literature of the fetal domain, suggesting possible future research directions that could impact the management of fetal MR images.

摘要

脑分割通常是许多临床应用中定量分析大脑的第一步,也是最关键的一步,包括胎儿成像。磁共振成像(MRI)中胎儿脑的分割存在多个方面的挑战,例如由于胎儿在检查过程中的运动,导致其位置不标准,大脑发育迅速,以及成像数据有限。近年来,已经提出了几种用于从 MRI 图像中自动分割胎儿脑的方法。这些算法旨在定义具有不同形状和强度的感兴趣区域,包括整个大脑,或分离特定结构。深度学习技术,特别是卷积神经网络(CNN),已成为该领域的一项先进技术,因为它们可以在异构数据集上提供可靠的分割结果。在这里,我们回顾了胎儿脑分割领域开发的深度学习算法,并根据它们的目标结构对其进行分类。最后,我们讨论了胎儿领域文献中感知到的研究差距,提出了可能影响胎儿 MR 图像管理的未来研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验