Suppr超能文献

用于磁共振成像中脑提取的自动上下文卷积神经网络(自动网络)

Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging.

作者信息

Mohseni Salehi Seyed Sadegh, Erdogmus Deniz, Gholipour Ali

出版信息

IEEE Trans Med Imaging. 2017 Nov;36(11):2319-2330. doi: 10.1109/TMI.2017.2721362. Epub 2017 Jun 28.

Abstract

Brain extraction or whole brain segmentation is an important first step in many of the neuroimage analysis pipelines. The accuracy and the robustness of brain extraction, therefore, are crucial for the accuracy of the entire brain analysis process. The state-of-the-art brain extraction techniques rely heavily on the accuracy of alignment or registration between brain atlases and query brain anatomy, and/or make assumptions about the image geometry, and therefore have limited success when these assumptions do not hold or image registration fails. With the aim of designing an accurate, learning-based, geometry-independent, and registration-free brain extraction tool, in this paper, we present a technique based on an auto-context convolutional neural network (CNN), in which intrinsic local and global image features are learned through 2-D patches of different window sizes. We consider two different architectures: 1) a voxelwise approach based on three parallel 2-D convolutional pathways for three different directions (axial, coronal, and sagittal) that implicitly learn 3-D image information without the need for computationally expensive 3-D convolutions and 2) a fully convolutional network based on the U-net architecture. Posterior probability maps generated by the networks are used iteratively as context information along with the original image patches to learn the local shape and connectedness of the brain to extract it from non-brain tissue. The brain extraction results we have obtained from our CNNs are superior to the recently reported results in the literature on two publicly available benchmark data sets, namely, LPBA40 and OASIS, in which we obtained the Dice overlap coefficients of 97.73% and 97.62%, respectively. Significant improvement was achieved via our auto-context algorithm. Furthermore, we evaluated the performance of our algorithm in the challenging problem of extracting arbitrarily oriented fetal brains in reconstructed fetal brain magnetic resonance imaging (MRI) data sets. In this application, our voxelwise auto-context CNN performed much better than the other methods (Dice coefficient: 95.97%), where the other methods performed poorly due to the non-standard orientation and geometry of the fetal brain in MRI. Through training, our method can provide accurate brain extraction in challenging applications. This, in turn, may reduce the problems associated with image registration in segmentation tasks.

摘要

脑提取或全脑分割是许多神经影像分析流程中的重要第一步。因此,脑提取的准确性和稳健性对于整个脑分析过程的准确性至关重要。当前最先进的脑提取技术严重依赖于脑图谱与待分析脑解剖结构之间配准的准确性,和/或对图像几何形状做出假设,因此当这些假设不成立或图像配准失败时,成功率有限。为了设计一种准确的、基于学习的、与几何无关且无需配准的脑提取工具,在本文中,我们提出了一种基于自动上下文卷积神经网络(CNN)的技术,其中通过不同窗口大小的二维图像块来学习内在的局部和全局图像特征。我们考虑了两种不同的架构:1)一种基于三个并行二维卷积路径的体素级方法,用于三个不同方向(轴向、冠状和矢状),该方法无需进行计算成本高昂的三维卷积即可隐式学习三维图像信息;2)一种基于U-net架构的全卷积网络。网络生成的后验概率图与原始图像块一起被迭代用作上下文信息,以学习脑的局部形状和连通性,从而将其与非脑组织区分开来。我们从卷积神经网络获得的脑提取结果在两个公开可用的基准数据集(即LPBA40和OASIS)上优于文献中最近报道的结果,在这两个数据集中,我们分别获得了97.73%和97.62%的骰子重叠系数。通过我们的自动上下文算法实现了显著的改进。此外,我们在从重建的胎儿脑磁共振成像(MRI)数据集中提取任意方向的胎儿脑这一具有挑战性的问题上评估了我们算法的性能。在这个应用中,我们的体素级自动上下文卷积神经网络的表现比其他方法好得多(骰子系数:95.97%),其他方法由于胎儿脑在MRI中的非标准方向和几何形状而表现不佳。通过训练,我们的方法可以在具有挑战性的应用中提供准确的脑提取。这反过来可能会减少分割任务中与图像配准相关的问题。

相似文献

7
Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.基于全卷积神经网络的 FLAIR MRI 脑肿瘤分割。
Comput Methods Programs Biomed. 2019 Jul;176:135-148. doi: 10.1016/j.cmpb.2019.05.006. Epub 2019 May 11.
8
DENSE-INception U-net for medical image segmentation.基于密集卷积 Inception 的 U-Net 网络在医学图像分割中的应用
Comput Methods Programs Biomed. 2020 Aug;192:105395. doi: 10.1016/j.cmpb.2020.105395. Epub 2020 Feb 15.

引用本文的文献

2
Synthetic data in generalizable, learning-based neuroimaging.可推广的基于学习的神经影像学中的合成数据。
Imaging Neurosci (Camb). 2024 Nov 19;2:1-22. doi: 10.1162/imag_a_00337. eCollection 2024 Nov 1.
4
Fetal-BET: Brain Extraction Tool for Fetal MRI.胎儿BET:胎儿磁共振成像的脑提取工具
IEEE Open J Eng Med Biol. 2024 Jul 12;5:551-562. doi: 10.1109/OJEMB.2024.3426969. eCollection 2024.

本文引用的文献

5
7
Brain tumor segmentation with Deep Neural Networks.基于深度神经网络的脑肿瘤分割。
Med Image Anal. 2017 Jan;35:18-31. doi: 10.1016/j.media.2016.05.004. Epub 2016 May 19.
8
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
9
Automatic Segmentation of MR Brain Images With a Convolutional Neural Network.基于卷积神经网络的磁共振脑图像自动分割。
IEEE Trans Med Imaging. 2016 May;35(5):1252-1261. doi: 10.1109/TMI.2016.2548501. Epub 2016 Mar 30.
10
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.基于 MRI 图像的卷积神经网络脑肿瘤分割。
IEEE Trans Med Imaging. 2016 May;35(5):1240-1251. doi: 10.1109/TMI.2016.2538465. Epub 2016 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验