Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile.
Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
PLoS One. 2023 Sep 8;18(9):e0291164. doi: 10.1371/journal.pone.0291164. eCollection 2023.
Extreme acidophiles thrive in harsh environments characterized by acidic pH, high concentrations of dissolved metals and high osmolarity. Most of these microorganisms are chemolithoautotrophs that obtain energy from low redox potential sources, such as the oxidation of ferrous ions. Under these conditions, the mechanisms that maintain homeostasis of proteins (proteostasis), as the main organic components of the cells, are of utmost importance. Thus, the analysis of protein chaperones is critical for understanding how these organisms deal with proteostasis under such environmental conditions. In this work, using a bioinformatics approach, we performed a comparative genomic analysis of the genes encoding classical, periplasmic and stress chaperones, and the protease systems. The analysis included 35 genomes from iron- or sulfur-oxidizing autotrophic, heterotrophic, and mixotrophic acidophilic bacteria. The results showed that classical ATP-dependent chaperones, mostly folding chaperones, are widely distributed, although they are sub-represented in some groups. Acidophilic bacteria showed redundancy of genes coding for the ATP-independent holdase chaperones RidA and Hsp20. In addition, a systematically high redundancy of genes encoding periplasmic chaperones like HtrA and YidC was also detected. In the same way, the proteolytic ATPase complexes ClpPX and Lon presented redundancy and broad distribution. The presence of genes that encoded protein variants was noticeable. In addition, genes for chaperones and protease systems were clustered within the genomes, suggesting common regulation of these activities. Finally, some genes were differentially distributed between bacteria as a function of the autotrophic or heterotrophic character of their metabolism. These results suggest that acidophiles possess an abundant and flexible proteostasis network that protects proteins in organisms living in energy-limiting and extreme environmental conditions. Therefore, our results provide a means for understanding the diversity and significance of proteostasis mechanisms in extreme acidophilic bacteria.
酸性 pH 值、溶解金属的高浓度和高渗透压。这些微生物大多数是化能自养生物,它们从低氧化还原电位的物质中获取能量,如亚铁离子的氧化。在这些条件下,维持蛋白质(蛋白质稳态)的机制对于了解这些生物体在这种环境条件下如何维持蛋白质稳态至关重要。在这项工作中,我们使用生物信息学方法,对编码经典、周质和应激伴侣蛋白以及蛋白酶系统的基因进行了比较基因组分析。该分析包括 35 个来自铁或硫氧化自养、异养和混合营养嗜酸细菌的基因组。结果表明,经典的 ATP 依赖性伴侣蛋白,主要是折叠伴侣蛋白,广泛分布,尽管在某些群体中它们的代表性较低。嗜酸细菌编码 ATP 非依赖性持留伴侣蛋白 RidA 和 Hsp20 的基因冗余度较高。此外,还检测到编码周质伴侣蛋白如 HtrA 和 YidC 的基因具有系统的高冗余性。同样,蛋白酶 ClpPX 和 Lon 的 ATP 酶复合物也具有冗余性和广泛的分布。存在编码蛋白质变体的基因是显而易见的。此外,伴侣蛋白和蛋白酶系统的基因在基因组内聚类,表明这些活性受到共同调控。最后,一些基因根据其代谢的自养或异养特性在细菌之间存在差异分布。这些结果表明,嗜酸菌拥有丰富而灵活的蛋白质稳态网络,可保护生活在能量有限和极端环境条件下的生物体中的蛋白质。因此,我们的研究结果为理解极端嗜酸细菌中蛋白质稳态机制的多样性和重要性提供了一种手段。