Rangel Gabriela, Cuevas-Tello Juan C, Rivera Mariano, Renteria Octavio
Facultad de Ingeniería, Universidad Autonoma de San Luis Potosi, San Luis Potosi 78290, Mexico.
Tecnologico Nacional de Mexico/ITSSLPC, San Luis Potosi 78421, Mexico.
Diagnostics (Basel). 2023 Sep 4;13(17):2858. doi: 10.3390/diagnostics13172858.
X-ray diagnostics are widely used to detect various diseases, such as bone fracture, pneumonia, or intracranial hemorrhage. This method is simple and accessible in most hospitals, but requires an expert who is sometimes unavailable. Today, some diagnoses are made with the help of deep learning algorithms based on Convolutional Neural Networks (CNN), but these algorithms show limitations. Recently, Capsule Networks (CapsNet) have been proposed to overcome these problems. In our work, CapsNet is used to detect whether a chest X-ray image has disease (COVID or pneumonia) or is healthy. An improved model called DRCaps is proposed, which combines the advantage of CapsNet and the dilation rate (dr) parameter to manage images with 226 × 226 resolution. We performed experiments with 16,669 chest images, in which our model achieved an accuracy of 90%. Furthermore, the model size is 11M with a reconstruction stage, which helps to avoid overfitting. Experiments show how the reconstruction stage works and how we can avoid the max-pooling operation for networks with a stride and dilation rate to downsampling the convolution layers. In this paper, DRCaps is superior to other comparable models in terms of accuracy, parameters, and image size handling. The main idea is to keep the model as simple as possible without using data augmentation or a complex preprocessing stage.
X射线诊断被广泛用于检测各种疾病,如骨折、肺炎或颅内出血。这种方法在大多数医院都很简单且容易获得,但需要一位专家,而专家有时难以找到。如今,一些诊断是借助基于卷积神经网络(CNN)的深度学习算法进行的,但这些算法存在局限性。最近,提出了胶囊网络(CapsNet)来克服这些问题。在我们的工作中,CapsNet用于检测胸部X光图像是否患有疾病(新冠或肺炎)或是否健康。我们提出了一种名为DRCaps的改进模型,它结合了CapsNet的优势和扩张率(dr)参数来处理分辨率为226×226的图像。我们用16669张胸部图像进行了实验,我们的模型在实验中达到了90%的准确率。此外,带有重建阶段的模型大小为11M,这有助于避免过拟合。实验展示了重建阶段的工作方式,以及我们如何避免对具有步长和扩张率的网络进行最大池化操作来对卷积层进行下采样。在本文中,DRCaps在准确率、参数和图像大小处理方面优于其他可比模型。主要思路是在不使用数据增强或复杂预处理阶段的情况下,尽可能使模型保持简单。