Wang Mingzhi, Guo Jifeng, Wang Yongjie, Yu Ming, Guo Jingtan
IEEE Trans Neural Syst Rehabil Eng. 2023;31:3664-3674. doi: 10.1109/TNSRE.2023.3314516. Epub 2023 Sep 20.
Multimodal data play an important role in the diagnosis of brain diseases. This study constructs a whole-brain functional connectivity network based on functional MRI data, uses non-imaging data with demographic information to complement the classification task for diagnosing subjects, and proposes a multimodal and across-site WL-DeepGCN-based method for classification to diagnose autism spectrum disorder (ASD). This method is used to resolve the existing problem that deep learning ASD identification cannot efficiently utilize multimodal data. In the WL-DeepGCN, a weight-learning network is used to represent the similarity of non-imaging data in the latent space, introducing a new approach for constructing population graph edge weights, and we find that it is beneficial and robust to define pairwise associations in the latent space rather than the input space. We propose a graph convolutional neural network residual connectivity approach to reduce the information loss due to convolution operations by introducing residual units to avoid gradient disappearance and gradient explosion. Furthermore, an EdgeDrop strategy makes the node connections sparser by randomly dropping edges in the raw graph, and its introduction can alleviate the overfitting and oversmoothing problems in the DeepGCN training process. We compare the WL-DeepGCN model with competitive models based on the same topics and nested 10-fold cross-validation show that our method achieves 77.27% accuracy and 0.83 AUC for ASD identification, bringing substantial performance gains.
多模态数据在脑部疾病的诊断中发挥着重要作用。本研究基于功能磁共振成像(fMRI)数据构建全脑功能连接网络,使用包含人口统计学信息的非成像数据来补充诊断受试者的分类任务,并提出一种基于多模态和跨站点的基于加权拉普拉斯深度图卷积网络(WL-DeepGCN)的分类方法来诊断自闭症谱系障碍(ASD)。该方法用于解决深度学习ASD识别无法有效利用多模态数据的现有问题。在WL-DeepGCN中,使用权重学习网络来表示潜在空间中非成像数据的相似性,引入了一种构建群体图边权重的新方法,并且我们发现,在潜在空间而非输入空间中定义成对关联是有益且稳健的。我们提出一种图卷积神经网络残差连接方法,通过引入残差单元来减少卷积操作导致的信息损失,以避免梯度消失和梯度爆炸。此外,一种边丢弃(EdgeDrop)策略通过在原始图中随机丢弃边来使节点连接更稀疏,其引入可以缓解DeepGCN训练过程中的过拟合和过平滑问题。我们将WL-DeepGCN模型与基于相同主题的竞争模型进行比较,嵌套10折交叉验证表明,我们的方法在ASD识别中实现了77.27%的准确率和0.83的曲线下面积(AUC),带来了显著的性能提升。