Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, Guangdong, China.
Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
BMC Med Imaging. 2024 Jul 25;24(1):186. doi: 10.1186/s12880-024-01360-y.
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects an individual's behavior, speech, and social interaction. Early and accurate diagnosis of ASD is pivotal for successful intervention. The limited availability of large datasets for neuroimaging investigations, however, poses a significant challenge to the timely and precise identification of ASD. To address this problem, we propose a breakthrough approach, GARL, for ASD diagnosis using neuroimaging data. GARL innovatively integrates the power of GANs and Deep Q-Learning to augment limited datasets and enhance diagnostic precision. We utilized the Autistic Brain Imaging Data Exchange (ABIDE) I and II datasets and employed a GAN to expand these datasets, creating a more robust and diversified dataset for analysis. This approach not only captures the underlying sample distribution within ABIDE I and II but also employs deep reinforcement learning for continuous self-improvement, significantly enhancing the capability of the model to generalize and adapt. Our experimental results confirmed that GAN-based data augmentation effectively improved the performance of all prediction models on both datasets, with the combination of InfoGAN and DQN's GARL yielding the most notable improvement.
自闭症谱系障碍 (ASD) 是一种神经发育障碍,会影响个体的行为、言语和社交互动。早期、准确地诊断 ASD 对于成功干预至关重要。然而,神经影像学研究的大型数据集有限,这对及时、准确地识别 ASD 构成了重大挑战。为了解决这个问题,我们提出了一种突破性的方法 GARL,用于使用神经影像学数据进行 ASD 诊断。GARL 创新性地结合了 GAN 和深度强化学习的优势,来扩充有限的数据集并提高诊断精度。我们利用了自闭症脑成像数据交换 (ABIDE) I 和 II 数据集,并使用 GAN 对这些数据集进行扩展,创建了一个更强大、更多样化的数据集进行分析。这种方法不仅可以捕捉 ABIDE I 和 II 中的潜在样本分布,还可以使用深度强化学习进行持续的自我改进,从而显著提高模型的泛化和适应能力。我们的实验结果证实,基于 GAN 的数据扩充有效地提高了两个数据集上所有预测模型的性能,InfoGAN 和 DQN 的 GARL 结合使用取得了最显著的改进。