Suppr超能文献

深度 ASD:一种基于深度对抗正则化图学习的多模态数据 ASD 诊断方法。

DeepASD: a deep adversarial-regularized graph learning method for ASD diagnosis with multimodal data.

机构信息

Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China.

出版信息

Transl Psychiatry. 2024 Sep 14;14(1):375. doi: 10.1038/s41398-024-02972-2.

Abstract

Autism Spectrum Disorder (ASD) is a prevalent neurological condition with multiple co-occurring comorbidities that seriously affect mental health. Precisely diagnosis of ASD is crucial to intervention and rehabilitation. A single modality may not fully reflect the complex mechanisms underlying ASD, and combining multiple modalities enables a more comprehensive understanding. Here, we propose, DeepASD, an end-to-end trainable regularized graph learning method for ASD prediction, which incorporates heterogeneous multimodal data and latent inter-patient relationships to better understand the pathogenesis of ASD. DeepASD first learns cross-modal feature representations through a multimodal adversarial-regularized encoder, and then constructs adaptive patient similarity networks by leveraging the representations of each modality. DeepASD exploits inter-patient relationships to boost the ASD diagnosis that is implemented by a classifier compositing of graph neural networks. We apply DeepASD to the benchmarking Autism Brain Imaging Data Exchange (ABIDE) data with four modalities. Experimental results show that the proposed DeepASD outperforms eight state-of-the-art baselines on the benchmarking ABIDE data, showing an improvement of 13.25% in accuracy, 7.69% in AUC-ROC, and 17.10% in specificity. DeepASD holds promise for a more comprehensive insight of the complex mechanisms of ASD, leading to improved diagnosis performance.

摘要

自闭症谱系障碍 (ASD) 是一种常见的神经疾病,伴有多种共病,严重影响心理健康。ASD 的精确诊断对干预和康复至关重要。单一模式可能无法完全反映 ASD 背后的复杂机制,而结合多种模式可以更全面地理解。在这里,我们提出了 DeepASD,这是一种用于 ASD 预测的端到端可训练正则化图学习方法,它结合了异构多模态数据和潜在的患者间关系,以更好地理解 ASD 的发病机制。DeepASD 首先通过多模态对抗正则化编码器学习跨模态特征表示,然后通过利用每个模态的表示来构建自适应患者相似性网络。DeepASD 利用患者间关系来提高 ASD 诊断的性能,这是通过一个由图神经网络组成的分类器来实现的。我们将 DeepASD 应用于基准自闭症脑成像数据交换 (ABIDE) 数据集,其中包含四个模态。实验结果表明,与基准 ABIDE 数据的八个最先进基线相比,所提出的 DeepASD 在准确性方面提高了 13.25%,在 AUC-ROC 方面提高了 7.69%,在特异性方面提高了 17.10%。DeepASD 有望更全面地了解 ASD 的复杂机制,从而提高诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec8/11401938/c4c17f3ea693/41398_2024_2972_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验