Division of Engineering and Applied Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA.
Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA.
Adv Sci (Weinh). 2023 Oct;10(30):e2301730. doi: 10.1002/advs.202301730. Epub 2023 Sep 15.
Engineered living materials (ELMs) exhibit desirable characteristics of the living component, including growth and repair, and responsiveness to external stimuli. Escherichia coli (E. coli) are a promising constituent of ELMs because they are very tractable to genetic engineering, produce heterologous proteins readily, and grow exponentially. However, seasonal variation in ambient temperature presents a challenge in deploying ELMs outside of a laboratory environment because E. coli growth rate is impaired both below and above 37 °C. Here, a genetic circuit is developed that controls the expression of a light-absorptive chromophore in response to changes in temperature. It is demonstrated that at temperatures below 36 °C, the engineered E. coli increase in pigmentation, causing an increase in sample temperature and growth rate above non-pigmented counterparts in a model planar ELM. On the other hand, at above 36 °C, they decrease in pigmentation, protecting the growth compared to bacteria with temperature-independent high pigmentation. Integrating the temperature-responsive circuit into an ELM has the potential to improve living material performance by optimizing growth and protein production in the face of seasonal temperature changes.
工程化活体材料 (ELMs) 表现出活体成分的理想特性,包括生长和修复以及对外界刺激的响应。大肠杆菌 (E. coli) 是 ELMs 的有前途的组成部分,因为它们非常易于进行基因工程改造,能够轻易地产生异源蛋白质,并且呈指数级生长。然而,环境温度的季节性变化给 ELMs 在实验室环境之外的应用带来了挑战,因为大肠杆菌的生长速度在 37°C 以下和以上都会受到损害。在这里,开发了一种遗传电路,该电路可以根据温度变化来控制光吸收色素的表达。结果表明,在 36°C 以下,工程化大肠杆菌的色素沉着增加,导致在模型平面 ELM 中,与非色素沉着对照相比,样品温度和生长速率升高。另一方面,在 36°C 以上,它们的色素沉着减少,与具有温度无关的高色素沉着的细菌相比,保护了生长。将温度响应电路集成到 ELM 中有可能通过优化生长和蛋白质生产来提高活体材料的性能,从而应对季节性温度变化。