Suppr超能文献

2020 年 1 月至 2023 年 2 月日本每日新增新冠肺炎确诊病例的时间序列分析。

Time series analysis of daily reported number of new positive cases of COVID-19 in Japan from January 2020 to February 2023.

机构信息

Department of Liberal Arts and Sciences, Division of Physics, Center for Medical Education, Sapporo Medical University, Sapporo, Hokkaido, Japan.

出版信息

PLoS One. 2023 Sep 15;18(9):e0285237. doi: 10.1371/journal.pone.0285237. eCollection 2023.

Abstract

This study investigated temporal variations of the COVID-19 pandemic in Japan using a time series analysis incorporating maximum entropy method (MEM) spectral analysis, which produces power spectral densities (PSDs). This method was applied to daily data of COVID-19 cases in Japan from January 2020 to February 2023. The analyses confirmed that the PSDs for data in both the pre- and post-Tokyo Olympics periods show exponential characteristics, which are universally observed in PSDs for time series generated from nonlinear dynamical systems, including the so-called susceptible/exposed/infectious/recovered (SEIR) model, well-established as a mathematical model of temporal variations of infectious disease outbreaks. The magnitude of the gradient of exponential PSD for the pre-Olympics period was smaller than that of the post-Olympics period, because of the relatively high complex variations of the data in the pre-Olympics period caused by a deterministic, nonlinear dynamical system and/or undeterministic noise. A 3-dimensional spectral array obtained by segment time series analysis indicates that temporal changes in the periodic structures of the COVID-19 data are already observable before the commencement of the Tokyo Olympics and immediately after the introduction of mass and workplace vaccination programs. Additionally, the possibility of applying theoretical studies for measles control programs to COVID-19 is discussed.

摘要

本研究采用最大熵谱分析(MEM 谱分析)的时间序列分析方法,对日本的 COVID-19 疫情进行了时间变化研究,该方法产生了功率谱密度(PSD)。该方法应用于 2020 年 1 月至 2023 年 2 月期间日本 COVID-19 病例的每日数据。分析结果证实,在东京奥运会前后两个时期的数据 PSD 均呈现指数特征,这在从非线性动力系统生成的时间序列的 PSD 中普遍存在,包括被广泛认可的传染病爆发的数学模型 SEIR 模型。由于在奥运会前的数据由确定性非线性动力系统和/或不确定性噪声引起的复杂变化较大,因此奥运会前时期的指数 PSD 梯度幅度小于奥运会后时期的指数 PSD 梯度幅度。通过分段时间序列分析获得的三维谱阵表明,在东京奥运会开始之前和大规模接种和工作场所接种计划实施之后,COVID-19 数据的周期性结构的时间变化已经可以观察到。此外,还讨论了将麻疹控制计划的理论研究应用于 COVID-19 的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5db/10503708/22359a4d58f8/pone.0285237.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验