Suppr超能文献

多药耐药菌感染神经重症监护病房患者的风险预测模型:一项回顾性队列研究。

Risk predict model using multi-drug resistant organism infection from Neuro-ICU patients: a retrospective cohort study.

机构信息

Nursing Department, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China.

Drug Clinical Trial Institution, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China.

出版信息

Sci Rep. 2023 Sep 15;13(1):15282. doi: 10.1038/s41598-023-42522-2.

Abstract

The aim of this study was to analyze the current situation and risk factors of multi-drug-resistant organism (MDRO) infection in Neuro-intensive care unit (ICU) patients, and to develop the risk predict model. The data was collected from the patients discharged from Neuro-ICU of grade-A tertiary hospital at Guizhou province from January 2018 to April 2020. Binary Logistics regression was used to analyze the data. The model was examined by receiver operating characteristic curve (ROC). The grouped data was used to verify the sensitivity and specificity of the model. A total of 297 patients were included, 131 patients infected with MDRO. The infection rate was 44.11%. The results of binary Logistics regression showed that tracheal intubation, artery blood pressure monitoring, fever, antibiotics, pneumonia were independent risk factors for MDRO infection in Neuro-ICU (P < 0.05), AUC = 0.887. The sensitivity and specificity of ROC curve was 86.3% and 76.9%. The risk prediction model had a good predictive effect on the risk of MDRO infection in Neuro ICU, which can evaluate the risk and provide reference for preventive treatment and nursing intervention.

摘要

本研究旨在分析神经重症监护病房(Neuro-ICU)患者多重耐药菌(MDRO)感染的现状及危险因素,并建立风险预测模型。数据来自 2018 年 1 月至 2020 年 4 月贵州省某三甲医院 Neuro-ICU 出院患者。采用二元 Logistic 回归进行数据分析,采用受试者工作特征曲线(ROC)检验模型,采用分组数据验证模型的灵敏度和特异性。共纳入 297 例患者,其中 131 例患者感染 MDRO,感染率为 44.11%。二元 Logistic 回归结果显示,气管插管、动脉血压监测、发热、抗生素、肺炎是 Neuro-ICU 患者 MDRO 感染的独立危险因素(P<0.05),AUC=0.887。ROC 曲线的灵敏度和特异性分别为 86.3%和 76.9%。该风险预测模型对 Neuro ICU 患者 MDRO 感染风险具有良好的预测效果,可评估风险,为预防治疗和护理干预提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec9c/10504308/ee1707507464/41598_2023_42522_Fig1_HTML.jpg

相似文献

2
Multi-drug resistant organism infections in a medical ICU: Association to clinical features and impact upon outcome.
Med Intensiva (Engl Ed). 2018 May;42(4):225-234. doi: 10.1016/j.medin.2017.07.006. Epub 2017 Oct 13.
3
[Risk factors for death in elderly patients admitted to intensive care unit after elective abdominal surgery: a consecutive 5-year retrospective study].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2021 Dec;33(12):1453-1458. doi: 10.3760/cma.j.cn121430-20210804-00118.
4
A deep learning model for predicting multidrug-resistant organism infection in critically ill patients.
J Intensive Care. 2023 Nov 9;11(1):49. doi: 10.1186/s40560-023-00695-y.
7
Carbapenem-resistant gram-negative bacterial infection in intensive care unit patients: Antibiotic resistance analysis and predictive model development.
Front Cell Infect Microbiol. 2023 Jan 30;13:1109418. doi: 10.3389/fcimb.2023.1109418. eCollection 2023.

本文引用的文献

1
Short versus long course of colistin treatment for carbapenem-resistant A. baumannii in critically ill patients: A propensity score matching study.
J Infect Public Health. 2023 Aug;16(8):1249-1255. doi: 10.1016/j.jiph.2023.05.024. Epub 2023 May 25.
4
Antibiotics use and its association with Multi-Drug Resistance in a Tertiary Care Geriatrics Hospital in Egypt.
J Infect Dev Ctries. 2022 Dec 19;16(12):1860-1869. doi: 10.3855/jidc.17257.
9
Multidrug-resistant organisms in intensive care units and logistic analysis of risk factors.
World J Clin Cases. 2022 Feb 26;10(6):1795-1805. doi: 10.12998/wjcc.v10.i6.1795.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验