Suppr超能文献

MF-Net:基于局部-全局特征融合网络的免疫荧光图像自动肌纤维分割。

MF-Net: Automated Muscle Fiber Segmentation From Immunofluorescence Images Using a Local-Global Feature Fusion Network.

机构信息

China Astronaut Research and Training Center, Beijing, 100094, People's Republic of China.

Institute of Applied Acoustics, School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China.

出版信息

J Digit Imaging. 2023 Dec;36(6):2411-2426. doi: 10.1007/s10278-023-00890-1. Epub 2023 Sep 15.

Abstract

Histological assessment of skeletal muscle slices is very important for the accurate evaluation of weightless muscle atrophy. The accurate identification and segmentation of muscle fiber boundary is an important prerequisite for the evaluation of skeletal muscle fiber atrophy. However, there are many challenges to segment muscle fiber from immunofluorescence images, including the presence of low contrast in fiber boundaries in immunofluorescence images and the influence of background noise. Due to the limitations of traditional convolutional neural network-based segmentation methods in capturing global information, they cannot achieve ideal segmentation results. In this paper, we propose a muscle fiber segmentation network (MF-Net) method for effective segmentation of macaque muscle fibers in immunofluorescence images. The network adopts a dual encoder branch composed of convolutional neural networks and transformer to effectively capture local and global feature information in the immunofluorescence image, highlight foreground features, and suppress irrelevant background noise. In addition, a low-level feature decoder module is proposed to capture more global context information by combining different image scales to supplement the missing detail pixels. In this study, a comprehensive experiment was carried out on the immunofluorescence datasets of six macaques' weightlessness models and compared with the state-of-the-art deep learning model. It is proved from five segmentation indices that the proposed automatic segmentation method can be accurately and effectively applied to muscle fiber segmentation in shank immunofluorescence images.

摘要

骨骼肌切片的组织学评估对于准确评估失重性肌肉萎缩非常重要。准确识别和分割肌纤维边界是评估骨骼肌纤维萎缩的重要前提。然而,从免疫荧光图像中分割肌纤维存在许多挑战,包括免疫荧光图像中纤维边界对比度低和背景噪声的影响。由于基于传统卷积神经网络的分割方法在捕获全局信息方面的局限性,它们无法实现理想的分割效果。本文提出了一种用于有效分割免疫荧光图像中猕猴肌纤维的肌纤维分割网络(MF-Net)方法。该网络采用由卷积神经网络和变形金刚组成的双编码器分支,有效地捕获免疫荧光图像中的局部和全局特征信息,突出前景特征,抑制无关的背景噪声。此外,还提出了一个低水平特征解码器模块,通过结合不同的图像尺度来捕获更多的全局上下文信息,以补充缺失的细节像素。在这项研究中,我们在六只猕猴失重模型的免疫荧光数据集上进行了全面的实验,并与最先进的深度学习模型进行了比较。从五个分割指标证明,所提出的自动分割方法可以准确有效地应用于小腿免疫荧光图像中的肌纤维分割。

相似文献

本文引用的文献

2
Medical Image Segmentation Using Transformer Networks.使用Transformer网络的医学图像分割
IEEE Access. 2022;10:29322-29332. doi: 10.1109/access.2022.3156894. Epub 2022 Mar 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验