The Scripps Research Institute, Department of Integrative Structural and Computational Biology, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA.
Sci Data. 2023 Sep 16;10(1):632. doi: 10.1038/s41597-023-02534-z.
Computational drug repositioning methods have emerged as an attractive and effective solution to find new candidates for existing therapies, reducing the time and cost of drug development. Repositioning methods based on biomedical knowledge graphs typically offer useful supporting biological evidence. This evidence is based on reasoning chains or subgraphs that connect a drug to a disease prediction. However, there are no databases of drug mechanisms that can be used to train and evaluate such methods. Here, we introduce the Drug Mechanism Database (DrugMechDB), a manually curated database that describes drug mechanisms as paths through a knowledge graph. DrugMechDB integrates a diverse range of authoritative free-text resources to describe 4,583 drug indications with 32,249 relationships, representing 14 major biological scales. DrugMechDB can be employed as a benchmark dataset for assessing computational drug repositioning models or as a valuable resource for training such models.
计算药物重定位方法已成为一种有吸引力和有效的解决方案,可用于寻找现有治疗方法的新候选药物,从而缩短药物开发的时间和成本。基于生物医学知识图谱的重定位方法通常提供有用的支持性生物学证据。这些证据基于推理链或子图,将药物与疾病预测联系起来。然而,目前还没有可以用于训练和评估此类方法的药物机制数据库。在这里,我们介绍了药物机制数据库(DrugMechDB),这是一个手动整理的数据库,将药物机制描述为知识图谱中的路径。DrugMechDB 集成了各种权威的自由文本资源,描述了 4583 种药物适应症和 32249 种关系,代表了 14 个主要的生物学尺度。DrugMechDB 可作为评估计算药物重定位模型的基准数据集,也可作为训练此类模型的有价值资源。