Cruz-Gregorio Alfredo, Aranda-Rivera Ana Karina, Amador-Martinez Isabel, Maycotte Paola
Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Mexico City, Mexico.
Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
Life Sci. 2023 Nov 1;332:122098. doi: 10.1016/j.lfs.2023.122098. Epub 2023 Sep 19.
Otto Warburg hypothesized that some cancer cells reprogram their metabolism, favoring glucose metabolism by anaerobic glycolysis (Warburg effect) instead of oxidative phosphorylation, mainly because the mitochondria of these cells were damaged or dysfunctional. It should be noted that mitochondrial apoptosis is decreased because of the dysfunctional mitochondria. Strategies like mitochondrial transplantation therapy, where functional mitochondria are transplanted to cancer cells, could increase cell death, such as apoptosis, because the intrinsic apoptosis mechanisms would be reactivated. In addition, mitochondrial transplantation is associated with the redox state, which could promote synergy with common anticancer treatments such as ionizing radiation, chemotherapy, or radiotherapy, increasing cell death due to the presence or decrease of oxidative stress. On the other hand, mitochondrial transfer, a natural process for sharing mitochondrial between cells, induces an increase in chemoresistance and invasiveness in cancer cells that receive mitochondria from cells of the tumor microenvironment (TME), which indicates an antitumor therapeutic target. This review focuses on understanding mitochondrial transplantation as a therapeutic outcome induced by a procedure in aspects including oxidative stress, metabolism shifting, mitochondrial function, auto-/mitophagy, invasiveness, and chemoresistance. It also explores how these mechanisms, such as apoptosis, necroptosis, and parthanatos, impact cell death pathways. Finally, it discusses the chemoresistance and invasiveness in cancer cells associated with mitochondria transfer, indicating an antitumor therapeutic target.
奥托·瓦尔堡提出假说,认为一些癌细胞会重新编程其新陈代谢,通过无氧糖酵解(瓦尔堡效应)而非氧化磷酸化来促进葡萄糖代谢,主要原因是这些细胞的线粒体受损或功能失调。应当指出的是,由于线粒体功能失调,线粒体凋亡减少。像线粒体移植疗法这样的策略,即将功能性线粒体移植到癌细胞中,可能会增加细胞死亡,比如凋亡,因为内在的凋亡机制会被重新激活。此外,线粒体移植与氧化还原状态相关,这可能会促进与电离辐射、化疗或放疗等常见抗癌治疗的协同作用,由于氧化应激的存在或减少而增加细胞死亡。另一方面,线粒体转移是细胞间共享线粒体的自然过程,它会导致从肿瘤微环境(TME)细胞接收线粒体的癌细胞的化疗耐药性和侵袭性增加,这表明存在一个抗肿瘤治疗靶点。本综述着重从氧化应激、代谢转变、线粒体功能、自噬/线粒体自噬、侵袭性和化疗耐药性等方面理解线粒体移植作为一种治疗手段所带来的治疗效果。它还探讨了凋亡、坏死性凋亡和PARP-1依赖性坏死等机制如何影响细胞死亡途径。最后,它讨论了与线粒体转移相关的癌细胞中的化疗耐药性和侵袭性,表明存在一个抗肿瘤治疗靶点。