Suppr超能文献

癌细胞通过过氧化氢“滋养”肿瘤微环境,从而驱动瓦博格效应:对人类肿瘤的 PET 成像的影响。

Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors.

机构信息

The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.

出版信息

Cell Cycle. 2011 Aug 1;10(15):2504-20. doi: 10.4161/cc.10.15.16585.

Abstract

Previously, we proposed that cancer cells behave as metabolic parasites, as they use targeted oxidative stress as a "weapon" to extract recycled nutrients from adjacent stromal cells. Oxidative stress in cancer-associated fibroblasts triggers autophagy and  mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis, and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the "reverse Warburg effect." To further test the validity of this hypothesis, here we used an in vitro MCF7-fibroblast co-culture system, and quantitatively measured a variety of metabolic parameters by FACS analysis (analogous to laser-capture micro-dissection).  Mitochondrial activity, glucose uptake, and ROS production were measured with highly-sensitive fluorescent probes (MitoTracker, NBD-2-deoxy-glucose, and DCF-DA). Interestingly, using this approach, we directly show that cancer cells initially secrete hydrogen peroxide that then triggers oxidative stress in neighboring fibroblasts. Thus, oxidative stress is contagious (spreads like a virus) and is propagated laterally and vectorially from cancer cells to adjacent fibroblasts. Experimentally, we show that oxidative stress in cancer-associated fibroblasts quantitatively reduces mitochondrial activity, and increases glucose uptake, as the fibroblasts become more dependent on aerobic glycolysis.  Conversely, co-cultured cancer cells show significant increases in mitochondrial activity, and corresponding reductions in both glucose uptake and GLUT1 expression. Pre-treatment of co-cultures with extracellular catalase (an anti-oxidant enzyme that detoxifies hydrogen peroxide) blocks the onset of oxidative stress, and potently induces the death of cancer cells, likely via starvation.  Given that cancer-associated fibroblasts show the largest increases in glucose uptake, we suggest that PET imaging of human tumors, with Fluoro-2-deoxy-D-glucose (F-2-DG), may be specifically detecting the tumor stroma, rather than epithelial cancer cells.

摘要

此前,我们提出癌细胞表现为代谢寄生虫,因为它们使用靶向氧化应激作为“武器”,从相邻的基质细胞中提取再循环的营养物质。癌症相关成纤维细胞中的氧化应激触发自噬和线粒体自噬,导致肿瘤基质中细胞分解代谢的区室化、线粒体功能丧失和有氧糖酵解的发生。因此,癌症相关成纤维细胞产生高能营养物质(如乳酸盐和酮体),为癌细胞中的线粒体生物发生和氧化代谢提供燃料。我们将这种新的能量转移机制称为“反向沃伯格效应”。为了进一步验证这一假设的有效性,我们在这里使用 MCF7-成纤维细胞共培养体外系统,并通过流式细胞术分析(类似于激光捕获显微切割)定量测量各种代谢参数。线粒体活性、葡萄糖摄取和 ROS 产生用高灵敏度荧光探针(MitoTracker、NBD-2-脱氧葡萄糖和 DCF-DA)进行测量。有趣的是,使用这种方法,我们直接表明癌细胞最初分泌过氧化氢,然后触发邻近成纤维细胞中的氧化应激。因此,氧化应激是传染性的(像病毒一样传播),并从癌细胞侧向和向量传播到相邻的成纤维细胞。实验表明,癌症相关成纤维细胞中的氧化应激定量降低线粒体活性,增加葡萄糖摄取,因为成纤维细胞变得更加依赖有氧糖酵解。相反,共培养的癌细胞显示出线粒体活性的显著增加,以及葡萄糖摄取和 GLUT1 表达的相应减少。共培养物的细胞外过氧化氢酶(一种解毒过氧化氢的抗氧化酶)预处理阻断氧化应激的发生,并有力地诱导癌细胞死亡,可能是通过饥饿。鉴于癌症相关成纤维细胞显示出最大的葡萄糖摄取增加,我们建议使用氟-2-脱氧-D-葡萄糖(F-2-DG)对人类肿瘤进行正电子发射断层扫描(PET)成像,可能专门检测肿瘤基质,而不是上皮癌细胞。

相似文献

5
Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment.
Int J Biochem Cell Biol. 2011 Jul;43(7):1045-51. doi: 10.1016/j.biocel.2011.01.023. Epub 2011 Feb 15.
9
Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
Semin Oncol. 2014 Apr;41(2):195-216. doi: 10.1053/j.seminoncol.2014.03.002. Epub 2014 Mar 5.

引用本文的文献

1
Effects of lactylation on the hallmarks of cancer (Review).
Oncol Lett. 2025 Aug 20;30(5):492. doi: 10.3892/ol.2025.15238. eCollection 2025 Nov.
2
Mitophagy's impacts on cancer and neurodegenerative diseases: implications for future therapies.
J Hematol Oncol. 2025 Aug 1;18(1):78. doi: 10.1186/s13045-025-01727-w.
3
Hypoxic link between cancer cells and the immune system: The role of adenosine and lactate.
Oncol Res. 2025 Jul 18;33(8):1803-1818. doi: 10.32604/or.2025.065953. eCollection 2025.
5
Non-invasive micro-test technology and applications.
Biophys Rep. 2025 Apr 30;11(2):96-111. doi: 10.52601/bpr.2024.240009.
7
Tumor microenvironment regulation by reactive oxygen species-mediated inflammasome activation.
Arch Pharm Res. 2025 Feb;48(2):115-131. doi: 10.1007/s12272-025-01532-6. Epub 2025 Jan 31.
8
Potential Probes for Targeted Intraoperative Fluorescence Imaging in Gastric Cancer.
Cancers (Basel). 2024 Dec 12;16(24):4141. doi: 10.3390/cancers16244141.
9
Diet-Modifiable Redox Alterations in Ageing and Cancer.
Subcell Biochem. 2024;107:129-172. doi: 10.1007/978-3-031-66768-8_7.
10
Cancer-associated fibroblasts: heterogeneity, tumorigenicity and therapeutic targets.
Mol Biomed. 2024 Dec 16;5(1):70. doi: 10.1186/s43556-024-00233-8.

本文引用的文献

2
Mitochondrial targeted catalase suppresses invasive breast cancer in mice.
BMC Cancer. 2011 May 23;11:191. doi: 10.1186/1471-2407-11-191.
3
Prognostic significance of tumor/stromal caveolin-1 expression in breast cancer patients.
Cancer Sci. 2011 Aug;102(8):1590-6. doi: 10.1111/j.1349-7006.2011.01985.x. Epub 2011 Jun 27.
4
The impact of caveolin protein expression in tumor stroma on prognosis of breast cancer.
Tumour Biol. 2011 Aug;32(4):787-99. doi: 10.1007/s13277-011-0181-6. Epub 2011 May 17.
9
Para-inflammation mediates systemic DNA damage in response to tumor growth.
Commun Integr Biol. 2011 Jan;4(1):78-81. doi: 10.4161/cib.4.1.13942.
10
Caveolin-1 in sarcomas: friend or foe?
Oncotarget. 2011 Apr;2(4):305-12. doi: 10.18632/oncotarget.255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验