The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
Cell Cycle. 2011 Aug 1;10(15):2504-20. doi: 10.4161/cc.10.15.16585.
Previously, we proposed that cancer cells behave as metabolic parasites, as they use targeted oxidative stress as a "weapon" to extract recycled nutrients from adjacent stromal cells. Oxidative stress in cancer-associated fibroblasts triggers autophagy and mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis, and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the "reverse Warburg effect." To further test the validity of this hypothesis, here we used an in vitro MCF7-fibroblast co-culture system, and quantitatively measured a variety of metabolic parameters by FACS analysis (analogous to laser-capture micro-dissection). Mitochondrial activity, glucose uptake, and ROS production were measured with highly-sensitive fluorescent probes (MitoTracker, NBD-2-deoxy-glucose, and DCF-DA). Interestingly, using this approach, we directly show that cancer cells initially secrete hydrogen peroxide that then triggers oxidative stress in neighboring fibroblasts. Thus, oxidative stress is contagious (spreads like a virus) and is propagated laterally and vectorially from cancer cells to adjacent fibroblasts. Experimentally, we show that oxidative stress in cancer-associated fibroblasts quantitatively reduces mitochondrial activity, and increases glucose uptake, as the fibroblasts become more dependent on aerobic glycolysis. Conversely, co-cultured cancer cells show significant increases in mitochondrial activity, and corresponding reductions in both glucose uptake and GLUT1 expression. Pre-treatment of co-cultures with extracellular catalase (an anti-oxidant enzyme that detoxifies hydrogen peroxide) blocks the onset of oxidative stress, and potently induces the death of cancer cells, likely via starvation. Given that cancer-associated fibroblasts show the largest increases in glucose uptake, we suggest that PET imaging of human tumors, with Fluoro-2-deoxy-D-glucose (F-2-DG), may be specifically detecting the tumor stroma, rather than epithelial cancer cells.
此前,我们提出癌细胞表现为代谢寄生虫,因为它们使用靶向氧化应激作为“武器”,从相邻的基质细胞中提取再循环的营养物质。癌症相关成纤维细胞中的氧化应激触发自噬和线粒体自噬,导致肿瘤基质中细胞分解代谢的区室化、线粒体功能丧失和有氧糖酵解的发生。因此,癌症相关成纤维细胞产生高能营养物质(如乳酸盐和酮体),为癌细胞中的线粒体生物发生和氧化代谢提供燃料。我们将这种新的能量转移机制称为“反向沃伯格效应”。为了进一步验证这一假设的有效性,我们在这里使用 MCF7-成纤维细胞共培养体外系统,并通过流式细胞术分析(类似于激光捕获显微切割)定量测量各种代谢参数。线粒体活性、葡萄糖摄取和 ROS 产生用高灵敏度荧光探针(MitoTracker、NBD-2-脱氧葡萄糖和 DCF-DA)进行测量。有趣的是,使用这种方法,我们直接表明癌细胞最初分泌过氧化氢,然后触发邻近成纤维细胞中的氧化应激。因此,氧化应激是传染性的(像病毒一样传播),并从癌细胞侧向和向量传播到相邻的成纤维细胞。实验表明,癌症相关成纤维细胞中的氧化应激定量降低线粒体活性,增加葡萄糖摄取,因为成纤维细胞变得更加依赖有氧糖酵解。相反,共培养的癌细胞显示出线粒体活性的显著增加,以及葡萄糖摄取和 GLUT1 表达的相应减少。共培养物的细胞外过氧化氢酶(一种解毒过氧化氢的抗氧化酶)预处理阻断氧化应激的发生,并有力地诱导癌细胞死亡,可能是通过饥饿。鉴于癌症相关成纤维细胞显示出最大的葡萄糖摄取增加,我们建议使用氟-2-脱氧-D-葡萄糖(F-2-DG)对人类肿瘤进行正电子发射断层扫描(PET)成像,可能专门检测肿瘤基质,而不是上皮癌细胞。
Int J Biochem Cell Biol. 2011-2-15
Oncol Lett. 2025-8-20
J Hematol Oncol. 2025-8-1
Biophys Rep. 2025-4-30
Cancers (Basel). 2024-12-12
Subcell Biochem. 2024
Mol Biomed. 2024-12-16
BMC Cancer. 2011-5-23
Commun Integr Biol. 2011-1
Oncotarget. 2011-4