Suppr超能文献

能源系统模型中电动汽车的精确且可扩展表示:一种基于虚拟存储的聚合方法。

Accurate and scalable representation of electric vehicles in energy system models: A virtual storage-based aggregation approach.

作者信息

Muessel Jarusch, Ruhnau Oliver, Madlener Reinhard

机构信息

Potsdam Institute for Climate Impact Research, Potsdam, Germany.

Global Energy Systems Analysis, Technical University Berlin, Germany.

出版信息

iScience. 2023 Sep 1;26(10):107816. doi: 10.1016/j.isci.2023.107816. eCollection 2023 Oct 20.

Abstract

The growing number of electric vehicles (EVs) will challenge the power system, but EVs may also support system balancing via smart charging. Modeling EVs' system-level impact while respecting computational constraints requires the aggregation of individual profiles. We show that studies typically rely on too few profiles to accurately model EVs' system-level impact and that a naïve aggregation of individual profiles leads to an overestimation of the fleet's flexibility potential. To overcome this problem, we introduce a scalable and accurate aggregation approach based on the idea of modeling deviations from an uncontrolled charging strategy as virtual energy storage. We apply this to a German case study and estimate an average flexibility potential of 6.2 kWh/EV, only 10% of the result of a naïve aggregation. We conclude that our approach allows for a more realistic representation of EVs in energy system models and suggest applying it to other flexible assets.

摘要

电动汽车(EV)数量的不断增加将给电力系统带来挑战,但电动汽车也可以通过智能充电来支持系统平衡。在考虑计算约束的情况下对电动汽车的系统级影响进行建模,需要对单个充电曲线进行聚合。我们表明,以往的研究通常依赖过少的充电曲线来准确模拟电动汽车的系统级影响,而且对单个充电曲线进行简单聚合会导致高估整个车队的灵活性潜力。为克服这一问题,我们引入了一种基于将与无控制充电策略的偏差建模为虚拟储能这一理念的可扩展且准确的聚合方法。我们将此方法应用于一个德国案例研究,并估计出每辆电动汽车的平均灵活性潜力为6.2千瓦时,仅为简单聚合结果的10%。我们得出结论,我们的方法能够在能源系统模型中更真实地体现电动汽车的情况,并建议将其应用于其他灵活资产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4912/10510052/c814224b1f95/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验