Suppr超能文献

环形吸引子作为仿生导航系统的基础。

Ring Attractors as the Basis of a Biomimetic Navigation System.

作者信息

Knowles Thomas C, Summerton Anna G, Whiting James G H, Pearson Martin J

机构信息

Bristol Robotics Laboratory, University of the West of England, Bristol BS16 1QY, UK.

School of Engineering, University of the West of England, Bristol BS16 1QY, UK.

出版信息

Biomimetics (Basel). 2023 Sep 1;8(5):399. doi: 10.3390/biomimetics8050399.

Abstract

The ability to navigate effectively in a rich and complex world is crucial for the survival of all animals. Specialist neural structures have evolved that are implicated in facilitating this ability, one such structure being the ring attractor network. In this study, we model a trio of Spiking Neural Network (SNN) ring attractors as part of a bio-inspired navigation system to maintain an internal estimate of planar translation of an artificial agent. This estimate is dynamically calibrated using a memory recall system of landmark-free allotheic multisensory experiences. We demonstrate that the SNN-based ring attractor system can accurately model motion through 2D space by integrating ideothetic velocity information and use recalled allothetic experiences as a positive corrective mechanism. This SNN based navigation system has potential for use in mobile robotics applications where power supply is limited and external sensory information is intermittent or unreliable.

摘要

在丰富复杂的世界中有效导航的能力对所有动物的生存至关重要。已经进化出了专门的神经结构,这些结构与促进这种能力有关,其中一种结构就是环形吸引子网络。在本研究中,我们将一组脉冲神经网络(SNN)环形吸引子建模为受生物启发的导航系统的一部分,以维持对人工智能体平面平移的内部估计。该估计通过无地标异体多感官体验的记忆召回系统进行动态校准。我们证明,基于SNN的环形吸引子系统可以通过整合本体感受速度信息来准确模拟在二维空间中的运动,并将召回的异体感受体验用作积极的校正机制。这种基于SNN的导航系统在移动机器人应用中具有潜力,这些应用中电源供应有限,外部感官信息是间歇性的或不可靠的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3383/10526409/a150cbe201af/biomimetics-08-00399-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验