Suppr超能文献

赫布可塑性在连续吸引子模型中使网格细胞活动与外部感官线索重新对齐。

Hebbian Plasticity Realigns Grid Cell Activity with External Sensory Cues in Continuous Attractor Models.

作者信息

Mulas Marcello, Waniek Nicolai, Conradt Jörg

机构信息

Neuroscientific System Theory Group, Department of Electric and Computer Engineering, Technische Universität München Munich, Germany.

出版信息

Front Comput Neurosci. 2016 Feb 17;10:13. doi: 10.3389/fncom.2016.00013. eCollection 2016.

Abstract

After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN), is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors over time due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments.

摘要

在发现网格细胞(理解哺乳动物大脑如何编码空间信息的重要组成部分)之后,为了解释其工作原理,人们提出了三类主要的计算模型。其中,基于连续吸引子网络(CAN)的模型在生物学合理性方面很有前景,并且适用于机器人应用。然而,就其目前的形式而言,它无法重现重要的电生理发现,也不能用于长时间执行路径积分。事实上,由于速度估计和神经计算中固有的噪声,在没有适当的重置机制的情况下,随着时间的推移误差会不断累积,这使得CAN模型无法重现稳定的空间网格模式。在本文中,我们提出了一种对CAN模型的扩展,利用赫布可塑性将网格细胞活动锚定到环境地标上。为了验证我们的方法,我们在神经模拟中使用了人工数据和从机器人装置记录的真实数据作为输入。这种额外的神经机制不仅可以将网格模式锚定到外部感官线索上,还可以回忆起在先前探索的环境中生成的网格模式。这些结果可能有助于下一代受生物启发的机器人导航算法,这些算法利用神经计算来应对复杂和动态的环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a10/4756165/06e11d69a137/fncom-10-00013-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验