Department of Applied Physics, Stanford University, Stanford, CA 94305;
Department of Neurobiology, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11798-E11806. doi: 10.1073/pnas.1805959115. Epub 2018 Nov 27.
Upon encountering a novel environment, an animal must construct a consistent environmental map, as well as an internal estimate of its position within that map, by combining information from two distinct sources: self-motion cues and sensory landmark cues. How do known aspects of neural circuit dynamics and synaptic plasticity conspire to accomplish this feat? Here we show analytically how a neural attractor model that combines path integration of self-motion cues with Hebbian plasticity in synaptic weights from landmark cells can self-organize a consistent map of space as the animal explores an environment. Intriguingly, the emergence of this map can be understood as an elastic relaxation process between landmark cells mediated by the attractor network. Moreover, our model makes several experimentally testable predictions, including () systematic path-dependent shifts in the firing fields of grid cells toward the most recently encountered landmark, even in a fully learned environment; () systematic deformations in the firing fields of grid cells in irregular environments, akin to elastic deformations of solids forced into irregular containers; and () the creation of topological defects in grid cell firing patterns through specific environmental manipulations. Taken together, our results conceptually link known aspects of neurons and synapses to an emergent solution of a fundamental computational problem in navigation, while providing a unified account of disparate experimental observations.
当动物遇到新环境时,它必须通过将来自两个不同来源的信息(自身运动线索和感官地标线索)结合起来,构建一个一致的环境地图,并对其在该地图中的位置进行内部估计。已知的神经回路动力学和突触可塑性的哪些方面协同作用来完成这项壮举?在这里,我们通过分析表明,一种将自身运动线索的路径整合与来自地标细胞的突触权重的赫布可塑性相结合的神经吸引子模型,如何在动物探索环境时自我组织一致的空间地图。有趣的是,该地图的出现可以理解为地标细胞之间通过吸引子网络介导的弹性弛豫过程。此外,我们的模型提出了几个可通过实验验证的预测,包括 () 在完全学习的环境中,网格细胞的发射场朝着最近遇到的地标出现系统性的、依赖路径的偏移;() 在不规则环境中,网格细胞的发射场出现系统性的变形,类似于被迫进入不规则容器的固体的弹性变形;以及 () 通过特定的环境操作在网格细胞发射模式中产生拓扑缺陷。总之,我们的研究结果从概念上将神经元和突触的已知方面与导航中的基本计算问题的涌现解决方案联系起来,同时为不同的实验观察结果提供了统一的解释。