Suppr超能文献

基于水平和垂直多世界优化的 COVID-19 胸片多阈值图像分割框架

Multilevel threshold image segmentation for COVID-19 chest radiography: A framework using horizontal and vertical multiverse optimization.

机构信息

College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.

Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.

出版信息

Comput Biol Med. 2022 Jul;146:105618. doi: 10.1016/j.compbiomed.2022.105618. Epub 2022 May 18.

Abstract

COVID-19 is currently raging worldwide, with more patients being diagnosed every day. It usually is diagnosed by examining pathological photographs of the patient's lungs. There is a lot of detailed and essential information on chest radiographs, but manual processing is not as efficient or accurate. As a result, how efficiently analyzing and processing chest radiography of COVID-19 patients is an important research direction to promote COVID-19 diagnosis. To improve the processing efficiency of COVID-19 chest films, a multilevel thresholding image segmentation (MTIS) method based on an enhanced multiverse optimizer (CCMVO) is proposed. CCMVO is improved from the original Multi-Verse Optimizer by introducing horizontal and vertical search mechanisms. It has a more assertive global search ability and can jump out of the local optimum in optimization. The CCMVO-based MTIS method can obtain higher quality segmentation results than HHO, SCA, and other forms and is less prone to stagnation during the segmentation process. To verify the performance of the proposed CCMVO algorithm, CCMVO is first compared with DE, MVO, and other algorithms by 30 benchmark functions; then, the proposed CCMVO is applied to image segmentation of COVID-19 chest radiography; finally, this paper verifies that the combination of MTIS and CCMVO is very successful with good segmentation results by using the Feature Similarity Index (FSIM), the Peak Signal to Noise Ratio (PSNR), and the Structural Similarity Index (SSIM). Therefore, this research can provide an effective segmentation method for a medical organization to process COVID-19 chest radiography and then help doctors diagnose coronavirus pneumonia (COVID-19).

摘要

新冠疫情目前在全球肆虐,每天都有更多的患者被确诊。通常通过检查患者肺部的病理照片来诊断新冠病毒。胸部 X 光片上有很多详细且重要的信息,但手动处理既不高效也不够准确。因此,如何高效地分析和处理新冠患者的胸部 X 光片是推动新冠诊断的一个重要研究方向。为了提高新冠胸部 X 光片的处理效率,提出了一种基于增强型多世界优化器(CCMVO)的多级阈值图像分割(MTIS)方法。CCMVO 是通过引入水平和垂直搜索机制从原始多世界优化器中改进而来的,它具有更强的全局搜索能力,可以在优化过程中跳出局部最优。基于 CCMVO 的 MTIS 方法比 HHO、SCA 等形式能获得更高质量的分割结果,且在分割过程中不易陷入停滞。为了验证所提出的 CCMVO 算法的性能,首先通过 30 个基准函数将 CCMVO 与 DE、MVO 等算法进行比较;然后,将所提出的 CCMVO 应用于新冠胸部 X 光图像分割;最后,通过使用特征相似性指数(FSIM)、峰值信噪比(PSNR)和结构相似性指数(SSIM)验证 MTIS 和 CCMVO 的组合具有非常成功的分割效果。因此,本研究可为医疗机构处理新冠胸部 X 光片提供一种有效的分割方法,进而帮助医生诊断冠状病毒肺炎(COVID-19)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/162d/9113963/2037d595e9e4/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验