Castro Jorge Iván, Araujo-Rodríguez Daniela G, Valencia-Llano Carlos Humberto, López Tenorio Diego, Saavedra Marcela, Zapata Paula A, Grande-Tovar Carlos David
Laboratorio SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia.
Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia.
Pharmaceutics. 2023 Aug 25;15(9):2196. doi: 10.3390/pharmaceutics15092196.
The increasing demand for non-invasive biocompatible materials in biomedical applications, driven by accidents and diseases like cancer, has led to the development of sustainable biomaterials. Here, we report the synthesis of four block formulations using polycaprolactone (PCL), polylactic acid (PLA), and zinc oxide nanoparticles (ZnO-NPs) for subdermal tissue regeneration. Characterization by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the composition of the composites. Additionally, the interaction of ZnO-NPs mainly occurred with the C=O groups of PCL occurring at 1724 cm, which disappears for F4, as evidenced in the FT-IR analysis. Likewise, this interaction evidenced the decrease in the crystallinity of the composites as they act as crosslinking points between the polymer backbones, inducing gaps between them and weakening the strength of the intermolecular bonds. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses confirmed that the ZnO-NPs bind to the carbonyl groups of the polymer, acting as weak points in the polymer backbone from where the different fragmentations occur. Scanning electron microscopy (SEM) showed that the increase in ZnO-NPs facilitated a more compact surface due to the excellent dispersion and homogeneous accumulation between the polymeric chains, facilitating this morphology. The in vivo studies using the nanocomposites demonstrated the degradation/resorption of the blocks in a ZnO-NP-dependant mode. After degradation, collagen fibers (Type I), blood vessels, and inflammatory cells continue the resorption of the implanted material. The results reported here demonstrate the relevance and potential impact of the ZnO-NP-based scaffolds in soft tissue regeneration.
在诸如癌症等事故和疾病的推动下,生物医学应用中对非侵入性生物相容性材料的需求不断增加,这促使了可持续生物材料的发展。在此,我们报告了使用聚己内酯(PCL)、聚乳酸(PLA)和氧化锌纳米颗粒(ZnO-NPs)合成四种嵌段配方用于皮下组织再生。通过傅里叶变换红外光谱(FT-IR)和X射线衍射(XRD)进行的表征证实了复合材料的组成。此外,ZnO-NPs的相互作用主要发生在PCL的C=O基团上,该基团出现在1724 cm处,在F4中消失,这在FT-IR分析中得到了证明。同样,这种相互作用证明了复合材料结晶度的降低,因为它们充当了聚合物主链之间的交联点,在它们之间形成间隙并削弱了分子间键的强度。热重分析(TGA)和差示扫描量热法(DSC)分析证实,ZnO-NPs与聚合物的羰基结合,在聚合物主链中充当不同碎片化发生的弱点。扫描电子显微镜(SEM)显示,由于ZnO-NPs在聚合物链之间具有出色的分散性和均匀积累,其增加促进了更致密的表面,有利于这种形态。使用纳米复合材料的体内研究表明,嵌段以依赖ZnO-NP的方式降解/吸收。降解后,I型胶原纤维、血管和炎症细胞继续吸收植入材料。此处报告的结果证明了基于ZnO-NP的支架在软组织再生中的相关性和潜在影响。