文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Antifungal Activity of Chitosan/Poly(Ethylene Oxide) Blend Electrospun Polymeric Fiber Mat Doped with Metallic Silver Nanoparticles.

作者信息

Murillo Leire, Rivero Pedro J, Sandúa Xabier, Pérez Gumer, Palacio José F, Rodríguez Rafael J

机构信息

Engineering Department, Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain.

Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain.

出版信息

Polymers (Basel). 2023 Sep 8;15(18):3700. doi: 10.3390/polym15183700.


DOI:10.3390/polym15183700
PMID:37765554
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10536667/
Abstract

In this work, the implementation of advanced functional coatings based on the combination of two compatible nanofabrication techniques such as electrospinning and dip-coating technology have been successfully obtained for the design of antifungal surfaces. In a first step, uniform and beadless electrospun nanofibers of both polyethylene oxide (PEO) and polyethylene (PEO)/chitosan (CS) blend samples have been obtained. In a second step, the dip-coating process has been gradually performed in order to ensure an adequate distribution of silver nanoparticles (AgNPs) within the electrospun polymeric matrix (PEO/CS/AgNPs) by using a chemical reduction synthetic process, denoted as in situ synthesis (ISS). Scanning electron microscopy (SEM) has been used to evaluate the surface morphology of the samples, showing an evolution in average fiber diameter from 157 ± 43 nm (PEO), 124 ± 36 nm (PEO/CS) and 330 ± 106 nm (PEO/CS/AgNPs). Atomic force microscopy (AFM) has been used to evaluate the roughness profile of the samples, indicating that the ISS process induced a smooth roughness surface because a change in the average roughness Ra from 84.5 nm (PEO/CS) up to 38.9 nm (PEO/CS/AgNPs) was observed. The presence of AgNPs within the electrospun fiber mat has been corroborated by UV-Vis spectroscopy thanks to their characteristic optical properties (orange film coloration) associated to the Localized Surface Plasmon Resonance (LSPR) phenomenon by showing an intense absorption band in the visible region at 436 nm. Energy dispersive X-ray (EDX) profile also indicates the existence of a peak located at 3 keV associated to silver. In addition, after doping the electrospun nanofibers with AgNPs, an important change in the wettability with an intrinsic hydrophobic behavior was observed by showing an evolution in the water contact angle value from 23.4° ± 1.3 (PEO/CS) up to 97.7° ± 5.3 (PEO/CS/AgNPs). The evaluation of the antifungal activity of the nanofibrous mats against clearly indicates that the presence of AgNPs in the outer surface of the nanofibers produced an important enhancement in the inhibition zone during mycelium growth as well as a better antifungal efficacy after a longer exposure time. Finally, these fabricated electrospun nanofibrous membranes can offer a wide range of potential uses in fields as diverse as biomedicine (antimicrobial against human or plant pathogen fungi) or even in the design of innovative packaging materials for food preservation.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/559d2848a869/polymers-15-03700-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/08f6d1cc3260/polymers-15-03700-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/a480c2d02b61/polymers-15-03700-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/fb20876f6432/polymers-15-03700-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/f6869118c079/polymers-15-03700-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/8c11c125919b/polymers-15-03700-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/13e8847fec51/polymers-15-03700-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/4472c9d413d4/polymers-15-03700-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/aa8ff21257ae/polymers-15-03700-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/ea1f5e08d0e5/polymers-15-03700-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/6f1ac891cba2/polymers-15-03700-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/c616d9c606bb/polymers-15-03700-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/51d8dc99c162/polymers-15-03700-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/559d2848a869/polymers-15-03700-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/08f6d1cc3260/polymers-15-03700-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/a480c2d02b61/polymers-15-03700-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/fb20876f6432/polymers-15-03700-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/f6869118c079/polymers-15-03700-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/8c11c125919b/polymers-15-03700-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/13e8847fec51/polymers-15-03700-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/4472c9d413d4/polymers-15-03700-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/aa8ff21257ae/polymers-15-03700-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/ea1f5e08d0e5/polymers-15-03700-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/6f1ac891cba2/polymers-15-03700-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/c616d9c606bb/polymers-15-03700-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/51d8dc99c162/polymers-15-03700-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f3/10536667/559d2848a869/polymers-15-03700-g013.jpg

相似文献

[1]
Antifungal Activity of Chitosan/Poly(Ethylene Oxide) Blend Electrospun Polymeric Fiber Mat Doped with Metallic Silver Nanoparticles.

Polymers (Basel). 2023-9-8

[2]
Antimicrobial activity of carboxymethyl chitosan/polyethylene oxide nanofibers embedded silver nanoparticles.

Carbohydr Polym. 2012-10-26

[3]
Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous Mats.

Mater Sci Eng C Mater Biol Appl. 2016-10-26

[4]
Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles.

Int J Biol Macromol. 2016-6-14

[5]
Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications.

Int J Nanomedicine. 2017-3-21

[6]
Photo-crosslinking of chitosan/poly(ethylene oxide) electrospun nanofibers.

Carbohydr Polym. 2019-8-1

[7]
Antibacterial Activity of Electrospun Nanocomposites Fabricated by In Situ Chitosan/Silver Nanoparticles.

IEEE Trans Nanobioscience. 2022-1

[8]
Electrospun hybrid nanofibers based on chitosan or N-carboxyethylchitosan and silver nanoparticles.

Macromol Biosci. 2009-9-9

[9]
Hybrid nanofibrous yarns based on N-carboxyethylchitosan and silver nanoparticles with antibacterial activity prepared by self-bundling electrospinning.

Carbohydr Res. 2010-8-25

[10]
Optimization of electrospinning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering.

J Biomater Sci Polym Ed. 2020-4

引用本文的文献

[1]
Electrospinning: A New Frontier in Peptide Therapeutics.

AAPS PharmSciTech. 2025-2-26

[2]
Electrospun Chitosan/Polylactic Acid Nanofibers with Silver Nanoparticles: Structure, Antibacterial, and Cytotoxic Properties.

ACS Appl Bio Mater. 2025-2-17

[3]
Antifungal Chitosan Nanocomposites-A New Perspective for Extending Food Storage.

Int J Mol Sci. 2024-12-8

[4]
Electrospinning Silk-Fibroin-Based Fibrous Membranes with AgNPs for Antimicrobial Application.

Polymers (Basel). 2024-2-28

[5]
Polycaprolactone Nanofibers Functionalized by Fibronectin/Gentamicin and Implanted Silver for Enhanced Antibacterial Properties, Cell Adhesion, and Proliferation.

Polymers (Basel). 2024-1-17

[6]
Development of Novel PET-PAN Electrospun Nanocomposite Membrane Embedded with Layered Double Hydroxides Hybrid for Efficient Wastewater Treatment.

Polymers (Basel). 2023-11-12

本文引用的文献

[1]
A Novel Intelligent Indicator Film: Preparation, Characterization, and Application.

Molecules. 2023-4-11

[2]
One-pot microwave synthesis of chitosan-stabilized silver nanoparticles entrapped polyethylene oxide nanofibers, with their intrinsic antibacterial and antioxidant potency for wound healing.

Int J Biol Macromol. 2023-4-30

[3]
Surface properties-dependent antifungal activity of silver nanoparticles.

Sci Rep. 2022-10-27

[4]
Insights into Ag-NPs-mediated pathophysiology and ultrastructural aberrations in ovarian tissues of darkling beetles.

Sci Rep. 2022-8-16

[5]
Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect.

Bioeng Transl Med. 2021-9-16

[6]
Icephobic and Anticorrosion Coatings Deposited by Electrospinning on Aluminum Alloys for Aerospace Applications.

Polymers (Basel). 2021-11-28

[7]
Fabrication and characterization of jujube extract-loaded electrospun polyvinyl alcohol nanofiber for strawberry preservation.

Food Sci Nutr. 2021-9-23

[8]
Strain Degeneration in : A Genotype Dependent Oxidative Stress Process Which Triggers Oxidative Stress, Cellular Detoxifying and Cell Wall Reshaping Genes.

J Fungi (Basel). 2021-10-14

[9]
Chitosan/PEO nanofibers containing Calendula officinalis extract: Preparation, characterization, in vitro and in vivo evaluation for wound healing applications.

Int J Pharm. 2021-11-20

[10]
Evaluation of the Photocatalytic Activity and Anticorrosion Performance of Electrospun Fibers Doped with Metallic Oxides.

Polymers (Basel). 2021-6-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索