Suppr超能文献

基于连接梯度反转的小鼠同型皮质分区方案。

A parcellation scheme of mouse isocortex based on reversals in connectivity gradients.

作者信息

Guyonnet-Hencke Timothé, Reimann Michael W

机构信息

Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland.

出版信息

Netw Neurosci. 2023 Oct 1;7(3):999-1021. doi: 10.1162/netn_a_00312. eCollection 2023.

Abstract

The brain is composed of several anatomically clearly separated structures. This parcellation is often extended into the isocortex, based on anatomical, physiological, or functional differences. Here, we derive a parcellation scheme based purely on the spatial structure of long-range synaptic connections within the cortex. To that end, we analyzed a publicly available dataset of average mouse brain connectivity, and split the isocortex into disjunct regions. Instead of clustering connectivity based on modularity, our scheme is inspired by methods that split sensory cortices into subregions where gradients of neuronal response properties, such as the location of the receptive field, reverse. We calculated comparable gradients from voxelized brain connectivity data and automatically detected reversals in them. This approach better respects the known presence of functional gradients within brain regions than clustering-based approaches. Placing borders at the reversals resulted in a parcellation into 41 subregions that differs significantly from an established scheme in nonrandom ways, but is comparable in terms of the modularity of connectivity between regions. It reveals unexpected trends of connectivity, such as a tripartite split of somatomotor regions along an anterior to posterior gradient. The method can be readily adapted to other organisms and data sources, such as human functional connectivity.

摘要

大脑由几个在解剖学上明显分隔的结构组成。基于解剖学、生理学或功能差异,这种分区常常延伸至同型皮质。在此,我们推导了一种纯粹基于皮质内远程突触连接的空间结构的分区方案。为此,我们分析了一个公开可用的平均小鼠脑连接性数据集,并将同型皮质划分为不连续的区域。我们的方案并非基于模块性对连接性进行聚类,而是受到将感觉皮质划分为子区域的方法的启发,在这些子区域中,神经元反应特性的梯度(如感受野的位置)会发生反转。我们从体素化的脑连接性数据中计算出可比的梯度,并自动检测其中的反转。与基于聚类的方法相比,这种方法更能体现脑区内已知的功能梯度的存在。在反转处设置边界会产生一个划分为41个子区域的分区,该分区与既定方案在非随机方式上有显著差异,但在区域间连接性的模块性方面具有可比性。它揭示了连接性的意外趋势,例如躯体运动区域沿前后梯度的三分法划分。该方法可以很容易地应用于其他生物体和数据源,如人类功能连接性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/356f/10473268/e172bbf65042/netn-7-3-999-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验