Suppr超能文献

蜜蜂肠道共生菌的单步基因组工程

Single-step genome engineering in the bee gut symbiont .

作者信息

Lariviere Patrick J, Ashraf A H M Zuberi, Leonard Sean P, Miller Laurel G, Moran Nancy A, Barrick Jeffrey E

机构信息

Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.

Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

bioRxiv. 2023 Sep 20:2023.09.19.558440. doi: 10.1101/2023.09.19.558440.

Abstract

Honey bees are economically relevant pollinators experiencing population declines due to a number of threats. As in humans, the health of bees is influenced by their microbiome. The bacterium is a key member of the bee gut microbiome and has a role in excluding pathogens. Despite this importance, there are not currently any easy-to-use methods for modifying the chromosome to study its genetics. To solve this problem, we developed a one-step procedure that uses electroporation and homologous recombination, which we term SnODIFY (odgrassella-specific ne-step gene eletion or nsertion to alter unctionalit). We used SnODIFY to create seven single-gene knockout mutants and recovered mutants for all constructs tested. Nearly all transformants had the designed genome modifications, indicating that SnODIFY is highly accurate. Mutant phenotypes were validated through knockout of Type 4 pilus genes, which led to reduced biofilm formation. We also used SnODIFY to insert heterologous sequences into the genome by integrating fluorescent protein-coding genes. Finally, we confirmed that genome modification is dependent on 's endogenous RecA protein. Because it does not require expression of exogenous recombination machinery, SnODIFY is a straightforward, accurate, and lightweight method for genome editing in . This workflow can be used to study the functions of genes and to engineer this symbiont for applications including protection of honey bee health.

摘要

蜜蜂是具有经济意义的传粉者,由于受到多种威胁,其种群数量正在下降。与人类一样,蜜蜂的健康受到其微生物组的影响。该细菌是蜜蜂肠道微生物组的关键成员,在排除病原体方面发挥作用。尽管其具有重要性,但目前尚无任何易于使用的方法来修饰该细菌的染色体以研究其遗传学。为了解决这个问题,我们开发了一种使用电穿孔和同源重组的一步法,我们将其称为SnODIFY(针对特定奥氏杆菌的一步基因敲除或插入以改变功能)。我们使用SnODIFY创建了七个单基因敲除突变体,并回收了所有测试构建体的突变体。几乎所有转化体都具有设计好的基因组修饰,这表明SnODIFY高度准确。通过敲除4型菌毛基因验证了突变体表型,这导致生物膜形成减少。我们还使用SnODIFY通过整合荧光蛋白编码基因将异源序列插入基因组。最后,我们证实基因组修饰依赖于该细菌的内源性RecA蛋白。由于它不需要表达外源重组机制,SnODIFY是一种用于该细菌基因组编辑的直接、准确且简便的方法。这种工作流程可用于研究该细菌基因的功能,并对这种共生体进行工程改造以用于包括保护蜜蜂健康在内的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c8/10541602/12033795e261/nihpp-2023.09.19.558440v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验