Xiong Yihuang, Bourgois Céline, Sheremetyeva Natalya, Chen Wei, Dahliah Diana, Song Hanbin, Zheng Jiongzhi, Griffin Sinéad M, Sipahigil Alp, Hautier Geoffroy
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain, Chemin des Étoiles 8, Louvain-la-Neuve B-1348, Belgium.
Sci Adv. 2023 Oct 6;9(40):eadh8617. doi: 10.1126/sciadv.adh8617. Epub 2023 Oct 4.
Color centers in host semiconductors are prime candidates as spin-photon interfaces for quantum applications. Finding an optimal spin-photon interface in silicon would move quantum information technologies toward a mature semiconducting host. However, the space of possible charged defects is vast, making the identification of candidates from experiments alone extremely challenging. Here, we use high-throughput first-principles computational screening to identify spin-photon interfaces among more than 1000 charged defects in silicon. The use of a single-shot hybrid functional approach is critical in enabling the screening of many quantum defects with a reasonable accuracy. We identify three promising spin-photon interfaces as potential bright emitters in the telecom band: [Formula: see text], [Formula: see text], and [Formula: see text]. These candidates are excited through defect-bound excitons, stressing the importance of such defects in silicon for telecom band operations. Our work paves the way to further large-scale computational screening for quantum defects in semiconductors.
主体半导体中的色心是量子应用中自旋-光子界面的主要候选对象。在硅中找到最佳的自旋-光子界面将推动量子信息技术朝着成熟的半导体主体发展。然而,可能的带电缺陷空间非常广阔,仅通过实验来识别候选对象极具挑战性。在此,我们使用高通量第一性原理计算筛选方法,在硅中的1000多个带电缺陷中识别自旋-光子界面。采用单次混合泛函方法对于以合理精度筛选众多量子缺陷至关重要。我们识别出三个有前景的自旋-光子界面,作为电信波段潜在的明亮发射体:[公式:见正文]、[公式:见正文]和[公式:见正文]。这些候选对象通过缺陷束缚激子被激发,凸显了此类硅缺陷在电信波段运行中的重要性。我们的工作为进一步大规模计算筛选半导体中的量子缺陷铺平了道路。