Suppr超能文献

DES15K数据库的密度泛函理论色散校正比较

Comparison of Density-Functional Theory Dispersion Corrections for the DES15K Database.

作者信息

Nickerson Cameron J, Bryenton Kyle R, Price Alastair J A, Johnson Erin R

机构信息

Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Rd, Halifax, Nova Scotia B3H 4R2, Canada.

Department of Chemistry, Dalhousie University, 6274 Coburg Rd, Halifax, Nova Scotia B3H 4R2, Canada.

出版信息

J Phys Chem A. 2023 Oct 19;127(41):8712-8722. doi: 10.1021/acs.jpca.3c04332. Epub 2023 Oct 4.

Abstract

While density-functional theory (DFT) remains one of the most widely used tools in computational chemistry, most functionals fail to properly account for the effects of London dispersion. Hence, there are many popular post-self-consistent methods to add a dispersion correction to the DFT energy. Until now, the most popular methods have never been compared on equal footing due to not being implemented in the same electronic structure packages. In this work, we performed a large-scale benchmarking study, directly comparing the accuracy of the exchange-hole dipole moment (XDM), D3BJ, D4, TS, MBD, and MBD-NL dispersion models when applied to the recent DES15K database of nearly 15,000 molecular complexes at both expanded and compressed geometries. Our study showed similarly good performance for all dispersion methods (except TS) when applied to neutral complexes. However, they all performed worse for ionic complexes, particularly those involving dications of alkaline earth metals, due to systematic overbinding by the base PBE0 density functional. Investigation of the largest outliers also revealed that only the MBD and MBD-NL methods demonstrate surprising errors for complexes involving alkali metal cations at compressed geometries where they tended to significantly overbind. As we would expect minimal dispersion binding for such complexes, we further investigated the origins of these errors for the potential energy curve of a model cation-π complex. Overall, there is little choice between the XDM, D3BJ, D4, MBD, and MBD-NL dispersion methods for most systems. However, the MBD-based methods are not recommended for complexes involving organic species and alkali or alkaline earth metal cations, for example when modeling Li intercalation into graphite.

摘要

虽然密度泛函理论(DFT)仍然是计算化学中使用最广泛的工具之一,但大多数泛函未能正确考虑伦敦色散效应。因此,有许多流行的自洽后方法来对DFT能量进行色散校正。到目前为止,由于没有在相同的电子结构软件包中实现,最流行的方法从未在平等的基础上进行比较。在这项工作中,我们进行了一项大规模的基准研究,直接比较了交换空穴偶极矩(XDM)、D3BJ、D4、TS、MBD和MBD-NL色散模型在应用于最近包含近15000个分子复合物的DES15K数据库时,在扩展和压缩几何结构下的准确性。我们的研究表明,当应用于中性复合物时,所有色散方法(TS除外)都表现出类似的良好性能。然而,对于离子复合物,尤其是那些涉及碱土金属二价阳离子的复合物,它们的表现都较差,这是由于基础PBE0密度泛函存在系统性的过度结合。对最大异常值的研究还表明,只有MBD和MBD-NL方法在压缩几何结构下对于涉及碱金属阳离子的复合物表现出惊人的误差,在这种情况下它们往往会显著过度结合。由于我们预计此类复合物的色散结合最小,我们进一步研究了模型阳离子-π复合物势能曲线中这些误差的来源。总体而言,对于大多数系统,XDM、D3BJ、D4、MBD和MBD-NL色散方法之间几乎没有区别。然而,不建议将基于MBD的方法用于涉及有机物种和碱金属或碱土金属阳离子的复合物,例如在模拟锂嵌入石墨时。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验