Suppr超能文献

基于心电图和运动描记器数据的多层算法的四阶段睡眠分期。

Four State Sleep Staging From a Multilayered Algorithm Using Electrocardiographic and Actigraphic Data.

机构信息

Novela Neurotechnologies, Inc, Alameda, California, U.S.A.

Department of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.

出版信息

J Clin Neurophysiol. 2024 Nov 1;41(7):610-617. doi: 10.1097/WNP.0000000000001038. Epub 2023 Oct 5.

Abstract

PURPOSE

Sleep studies are important to evaluate sleep and sleep-related disorders. The standard test for evaluating sleep is polysomnography, during which several physiological signals are recorded separately and simultaneously with specialized equipment that requires a technologist. Simpler recordings that can model the results of a polysomnography would provide the benefit of expanding the possibilities of sleep recordings.

METHODS

Using the publicly available sleep data set from the multiethnic study of atherosclerosis and 1769 nights of sleep, we extracted a distinct data subset with engineered features of the biomarkers collected by actigraphic, oxygenation, and electrocardiographic sensors. We then applied scalable models with recurrent neural network and Extreme Gradient Boosting (XGBoost) with a layered approach to produce an algorithm that we then validated with a separate data set of 177 nights.

RESULTS

The algorithm achieved an overall performance of 0.833 accuracy and 0.736 kappa in classifying into four states: wake, light sleep, deep sleep, and rapid eye movement (REM). Using feature analysis, we demonstrated that heart rate variability is the most salient feature, which is similar to prior reports.

CONCLUSIONS

Our results demonstrate the potential benefit of a multilayered algorithm and achieved higher accuracy and kappa than previously described approaches for staging sleep. The results further the possibility of simple, wearable devices for sleep staging. Code is available at https://github.com/NovelaNeuro/nEureka-SleepStaging .

摘要

目的

睡眠研究对于评估睡眠和与睡眠相关的疾病非常重要。评估睡眠的标准测试是多导睡眠图,在此期间,使用专门的设备同时单独记录几个生理信号,而该设备需要技术人员操作。更简单的记录方法可以模拟多导睡眠图的结果,从而扩大睡眠记录的可能性。

方法

我们使用动脉粥样硬化多民族研究中的公开睡眠数据集和 1769 个睡眠夜,从通过活动记录仪、氧合和心电图传感器收集的生物标志物中提取出具有工程特征的独特数据集。然后,我们应用具有递归神经网络和极端梯度提升(XGBoost)的可扩展模型,并采用分层方法来生成一种算法,然后使用 177 个睡眠夜的单独数据集对其进行验证。

结果

该算法在将睡眠分为四个状态(清醒、浅睡、深睡和快速眼动(REM))的分类中达到了 0.833 的准确性和 0.736 的kappa 值。通过特征分析,我们证明了心率变异性是最显著的特征,这与先前的报告相似。

结论

我们的结果表明,多层算法具有潜在的益处,并在睡眠分期方面达到了比先前描述的方法更高的准确性和kappa 值。这些结果进一步证明了使用简单、可穿戴的设备进行睡眠分期的可能性。代码可在 https://github.com/NovelaNeuro/nEureka-SleepStaging 上获得。

相似文献

本文引用的文献

3
Ambulatory EEG Monitoring, Reviewing, and Interpreting.门诊脑电图监测、复查和解读。
J Clin Neurophysiol. 2021 Mar 1;38(2):77-86. doi: 10.1097/WNP.0000000000000610.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验