McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; NeuroRx Research, Montreal, QC, Canada.
McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; NeuroRx Research, Montreal, QC, Canada.
Med Image Anal. 2023 Dec;90:102942. doi: 10.1016/j.media.2023.102942. Epub 2023 Sep 9.
Magnetic resonance imaging (MRI) is increasingly being used to delineate morphological changes underlying neurological disorders. Successfully detecting these changes depends on the MRI data quality. Unfortunately, image artifacts frequently compromise the MRI utility, making it critical to screen the data. Currently, quality assessment requires visual inspection, a time-consuming process that suffers from inter-rater variability. Automated methods to detect MRI artifacts could improve the efficiency of the process. Such automated methods have achieved high accuracy using small datasets, with balanced proportions of MRI data with and without artifacts. With the current trend towards big data in neuroimaging, there is a need for automated methods that achieve accurate detection in large and imbalanced datasets. Deep learning (DL) is the ideal MRI artifact detection algorithm for large neuroimaging databases. However, the inference generated by DL does not commonly include a measure of uncertainty. Here, we present the first stochastic DL algorithm to generate automated, high-performing MRI artifact detection implemented on a large and imbalanced neuroimaging database. We implemented Monte Carlo dropout in a 3D AlexNet to generate probabilities and epistemic uncertainties. We then developed a method to handle class imbalance, namely data-ramping to transfer the learning by extending the dataset size and the proportion of the artifact-free data instances. We used a 34,800 scans (98% clean) dataset. At baseline, we obtained 89.3% testing accuracy (F1 = 0.230). Following the transfer learning (with data-ramping), we obtained 94.9% testing accuracy (F1 = 0.357) outperforming focal cross-entropy (92.9% testing accuracy, F1 = 0.304) incorporated for comparison at handling class imbalance. By implementing epistemic uncertainties, we improved the testing accuracy to 99.5% (F1 = 0.834), outperforming the results obtained in previous comparable studies. In addition, we estimated aleatoric uncertainties by incorporating random flips to the MRI volumes, and demonstrated that aleatoric uncertainty can be implemented as part of the pipeline. The methods we introduce enhance the efficiency of managing large databases and the exclusion of artifact images from big data analyses.
磁共振成像(MRI)越来越多地用于描绘神经疾病的形态变化。成功检测这些变化取决于 MRI 数据的质量。不幸的是,图像伪影经常影响 MRI 的使用,因此必须对数据进行筛选。目前,质量评估需要进行视觉检查,这是一个耗时的过程,存在评分者间的差异。自动检测 MRI 伪影的方法可以提高该过程的效率。这种自动方法在使用小数据集时可以达到高精度,并且数据集具有与无伪影的 MRI 数据的平衡比例。随着神经影像学中大数据的当前趋势,需要在大型和不平衡的数据集上实现准确检测的自动化方法。深度学习(DL)是大型神经影像学数据库中进行 MRI 伪影检测的理想算法。然而,DL 产生的推理通常不包括不确定性的度量。在这里,我们提出了第一个用于生成自动化、高性能 MRI 伪影检测的随机 DL 算法,该算法基于大型和不平衡的神经影像学数据库实现。我们在 3D AlexNet 中实现了蒙特卡罗辍学,以生成概率和认识不确定性。然后,我们开发了一种处理类不平衡的方法,即数据扩展,通过扩展数据集大小和无伪影数据实例的比例来转移学习。我们使用了一个 34800 次扫描(98%清洁)的数据集。在基线时,我们获得了 89.3%的测试准确率(F1 = 0.230)。在进行迁移学习(数据扩展)后,我们获得了 94.9%的测试准确率(F1 = 0.357),优于用于比较的焦点交叉熵(92.9%的测试准确率,F1 = 0.304)。通过实现认识不确定性,我们将测试准确率提高到 99.5%(F1 = 0.834),优于之前可比研究中的结果。此外,我们通过向 MRI 体积中添加随机翻转来估计随机不确定性,并证明随机不确定性可以作为管道的一部分来实现。我们引入的方法提高了管理大型数据库和从大数据分析中排除伪影图像的效率。