Suppr超能文献

GSDA:基于生成对抗网络的半监督数据增强用于超声图像分类

GSDA: Generative adversarial network-based semi-supervised data augmentation for ultrasound image classification.

作者信息

Liu Zhaoshan, Lv Qiujie, Lee Chau Hung, Shen Lei

机构信息

Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.

School of Intelligent Systems Engineering, Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, 518107, China.

出版信息

Heliyon. 2023 Sep 4;9(9):e19585. doi: 10.1016/j.heliyon.2023.e19585. eCollection 2023 Sep.

Abstract

Medical Ultrasound (US) is one of the most widely used imaging modalities in clinical practice, but its usage presents unique challenges such as variable imaging quality. Deep Learning (DL) models can serve as advanced medical US image analysis tools, but their performance is greatly limited by the scarcity of large datasets. To solve the common data shortage, we develop GSDA, a Generative Adversarial Network (GAN)-based semi-supervised data augmentation method. GSDA consists of the GAN and Convolutional Neural Network (CNN). The GAN synthesizes and pseudo-labels high-resolution, high-quality US images, and both real and synthesized images are then leveraged to train the CNN. To address the training challenges of both GAN and CNN with limited data, we employ transfer learning techniques during their training. We also introduce a novel evaluation standard that balances classification accuracy with computational time. We evaluate our method on the BUSI dataset and GSDA outperforms existing state-of-the-art methods. With the high-resolution and high-quality images synthesized, GSDA achieves a 97.9% accuracy using merely 780 images. Given these promising results, we believe that GSDA holds potential as an auxiliary tool for medical US analysis.

摘要

医学超声(US)是临床实践中使用最广泛的成像方式之一,但其应用存在诸如成像质量可变等独特挑战。深度学习(DL)模型可作为先进的医学超声图像分析工具,但其性能受到大型数据集稀缺的极大限制。为解决常见的数据短缺问题,我们开发了GSDA,一种基于生成对抗网络(GAN)的半监督数据增强方法。GSDA由GAN和卷积神经网络(CNN)组成。GAN合成并伪标记高分辨率、高质量的超声图像,然后利用真实图像和合成图像来训练CNN。为解决在数据有限的情况下GAN和CNN的训练挑战,我们在它们的训练过程中采用迁移学习技术。我们还引入了一种新颖的评估标准,该标准在分类准确率和计算时间之间取得平衡。我们在BUSI数据集上评估了我们的方法,GSDA优于现有的最先进方法。通过合成高分辨率和高质量的图像,GSDA仅使用780张图像就达到了97.9%的准确率。鉴于这些令人鼓舞的结果,我们相信GSDA作为医学超声分析的辅助工具具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验