Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
College of Food Science and Engineering, Foshan University of Science and Technology, Foshan, 528231, China.
BMC Genomics. 2023 Oct 9;24(1):598. doi: 10.1186/s12864-023-09689-4.
Conus, a highly diverse species of venomous predators, has attracted significant attention in neuroscience and new drug development due to their rich collection of neuroactive peptides called conotoxins. Recent advancements in transcriptome, proteome, and genome analyses have facilitated the identification of conotoxins within Conus' venom glands, providing insights into the genetic features and evolutionary patterns of conotoxin genes. However, the underlying mechanism behind the extraordinary hypervariability of conotoxins remains largely unknown.
We analyzed the transcriptomes of 34 Conus species, examining various tissues such as the venom duct, venom bulb, and salivary gland, leading to the identification of conotoxin genes. Genetic variation analysis revealed that a subset of these genes (15.78% of the total) in Conus species underwent positive selection (Ka/Ks > 1, p < 0.01). Additionally, we reassembled and annotated the genome of C. betulinus, uncovering 221 conotoxin-encoding genes. These genes primarily consisted of three exons, with a significant portion showing high transcriptional activity in the venom ducts. Importantly, the flanking regions and adjacent introns of conotoxin genes exhibited a higher prevalence of transposon elements, suggesting their potential contribution to the extensive variability observed in conotoxins. Furthermore, we detected genome duplication in C. betulinus, which likely contributed to the expansion of conotoxin gene numbers. Interestingly, our study also provided evidence of introgression among Conus species, indicating that interspecies hybridization may have played a role in shaping the evolution of diverse conotoxin genes.
This study highlights the impact of adaptive evolution and introgressive hybridization on the genetic diversity of conotoxin genes and the evolution of Conus. We also propose a hypothesis suggesting that transposable elements might significantly contribute to the remarkable diversity observed in conotoxins. These findings not only enhance our understanding of peptide genetic diversity but also present a novel approach for peptide bioengineering.
圆锥是一个多样化的剧毒捕食者物种,由于其丰富的神经活性肽—— conotoxin 而在神经科学和新药开发中引起了广泛关注。最近在转录组、蛋白质组和基因组分析方面的进展促进了圆锥毒液腺中 conotoxin 的鉴定,为 conotoxin 基因的遗传特征和进化模式提供了深入了解。然而, conotoxin 异常高变异性的潜在机制在很大程度上仍然未知。
我们分析了 34 种圆锥物种的转录组,检查了各种组织,如毒液管、毒液球和唾液腺,从而鉴定了 conotoxin 基因。遗传变异分析显示,这些圆锥物种中的一部分基因(占总数的 15.78%)经历了正选择(Ka/Ks>1,p<0.01)。此外,我们重新组装并注释了 C. betulinus 的基因组,发现了 221 个编码 conotoxin 的基因。这些基因主要由三个外显子组成,其中很大一部分在毒液管中表现出高转录活性。重要的是,conotoxin 基因的侧翼区域和相邻内含子显示出更高的转座子元件发生率,表明它们可能对 conotoxin 中观察到的广泛变异性有贡献。此外,我们在 C. betulinus 中检测到了基因组重复,这可能导致了 conotoxin 基因数量的扩张。有趣的是,我们的研究还提供了圆锥物种间基因渗入的证据,表明种间杂交可能在塑造多样化 conotoxin 基因的进化中发挥了作用。
本研究强调了适应性进化和基因渗入对 conotoxin 基因遗传多样性和圆锥进化的影响。我们还提出了一个假设,即转座元件可能对 conotoxin 中观察到的显著多样性有重要贡献。这些发现不仅增强了我们对肽遗传多样性的理解,还为肽生物工程提供了新的方法。