Suppr超能文献

儿童是小型成人(经过适当标准化后):可转移/通用的脓毒症预测。

Children are small adults (when properly normalized): Transferrable/generalizable sepsis prediction.

作者信息

Marassi Caitlin, Socia Damien, Larie Dale, An Gary, Cockrell R Chase

机构信息

Department of Surgery, University of Vermont, 89 Beaumont Ave, Given D319, Burlington, VT 05405, United States of America.

出版信息

Surg Open Sci. 2023 Sep 22;16:77-81. doi: 10.1016/j.sopen.2023.09.013. eCollection 2023 Dec.

Abstract

BACKGROUND

Though governed by the same underlying biology, the differential physiology of children causes the temporal evolution from health to a septic/diseased state to follow trajectories that are distinct from adult cases. As pediatric sepsis data sets are less readily available than for adult sepsis, we aim to leverage this shared underlying biology by normalizing pediatric physiological data such that it would be directly comparable to adult data, and then develop machine-learning (ML) based classifiers to predict the onset of sepsis in the pediatric population. We then externally validated the classifiers in an independent adult dataset.

METHODS

Vital signs and laboratory observables were obtained from the Pediatric Intensive Care (PIC) database. These data elements were normalized for age and placed on a continuous scale, termed the Continuous Age-Normalized SOFA (CAN-SOFA) score. The XGBoost algorithm was used to classify pediatric patients that are septic. We tested the trained model using adult data from the MIMIC-IV database.

RESULTS

On the pediatric population, the sepsis classifier has an accuracy of 0.84 and an F1-Score of 0.867. On the adult population, the sepsis classifier has an accuracy of 0.80 and an F1-score of 0.88; when tested on the adult population, the model showed similar performance degradation ("data drift") as in the pediatric population.

CONCLUSIONS

In this work, we demonstrate that, using a straightforward age-normalization method, EHR's can be generalizable compared (at least in the context of sepsis) between the pediatric and adult populations.

摘要

背景

尽管儿童和成人的基础生物学机制相同,但儿童独特的生理学特征导致其从健康状态发展到脓毒症/疾病状态的时间演变轨迹与成人不同。由于儿科脓毒症数据集比成人脓毒症数据集更难获取,我们旨在通过对儿科生理数据进行标准化处理,利用这种共同的基础生物学机制,使其能够直接与成人数据进行比较,然后开发基于机器学习(ML)的分类器来预测儿科人群中脓毒症的发作。随后,我们在一个独立的成人数据集中对这些分类器进行了外部验证。

方法

从儿科重症监护(PIC)数据库中获取生命体征和实验室观测数据。这些数据元素按年龄进行了标准化处理,并置于一个连续的量表上,称为连续年龄标准化序贯器官衰竭评估(CAN-SOFA)评分。使用XGBoost算法对脓毒症儿科患者进行分类。我们使用来自MIMIC-IV数据库的成人数据对训练好的模型进行了测试。

结果

在儿科人群中,脓毒症分类器的准确率为0.84,F1分数为0.867。在成人人群中,脓毒症分类器的准确率为0.80,F1分数为0.88;在成人人群中进行测试时,该模型表现出与儿科人群中类似的性能下降(“数据漂移”)。

结论

在这项研究中,我们证明,使用一种简单的年龄标准化方法,电子健康记录(EHR)在儿科和成人人群之间(至少在脓毒症的背景下)具有可推广性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8cd/10561114/4ba512312dd3/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验